Search results for: Earth's surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7455

Search results for: Earth's surface

1065 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 361
1064 Comparison of Trunk and Hip Muscle Activities and Anterior Pelvic Tilt Angle during Three Different Bridging Exercises in Subjects with Chronic Low Back Pain

Authors: Da-Eun Kim, Heon-Seock Cynn, Sil-Ah Choi, A-Reum Shin

Abstract:

Bridging exercise in supine position with the hips and knees flexed have been commonly performed as one of the therapeutic exercises and is a comfortable and pain-free position to most individuals with chronic low back pain (CLBP). Many previous studies have investigated the beneficial way of performing bridging exercises to improve activation of abdominal and gluteal muscle and reduce muscle activity of hamstrings (HAM) and erector spinae (ES) and compensatory lumbopelvic motion. The purpose of this study was to compare the effects of three different bridging exercises on the HAM, ES, gluteus maximus (Gmax), gluteus medius (Gmed), and transverse abdominis/internal abdominis oblique (TrA/IO) activities and anterior pelvic tilt angle in subjects with CLBP. Seventeen subjects with CLBP participated in this study. They performed bridging under three different conditions (with 30° hip abduction, isometric hip abduction, and isometric hip adduction). Surface electromyography was used to measure muscle activity, and the ImageJ software was used to calculate anterior pelvic tilt angle. One-way repeated-measures analysis of variance was used to assess the statistical significance of the measured variables. HAM activity was significantly lower in bridging with 30° hip abduction and isometric hip abduction than in bridging with isometric hip adduction. Gmax and Gmed activities were significantly greater in bridging with isometric hip abduction than in bridging with 30° hip abduction and isometric hip adduction. TrA/IO muscle activity was significantly greater and anterior pelvic tilt angle was significantly lower in bridging with isometric hip adduction than in bridging with 30° hip abduction and isometric hip abduction. Bridging with isometric hip abduction using Thera-Band can effectively reduce HAM activity, and increase Gmax and Gmed activities in subjects with CLBP. Bridging with isometric hip adduction using a pressure biofeedback unit can be a beneficial exercise to improve TrA/IO activity and minimize anterior pelvic tilt in subjects with CLBP.

Keywords: bridging exercise, electromyography, low back pain, lower limb exercise

Procedia PDF Downloads 211
1063 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling

Procedia PDF Downloads 408
1062 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione

Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity

Abstract:

Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.

Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on

Procedia PDF Downloads 152
1061 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 301
1060 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields

Authors: Babak Rezaei, Arash Zargar Shoushtari

Abstract:

Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.

Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields

Procedia PDF Downloads 358
1059 Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam

Authors: I. Wlasny, Z. Klusek, A. Wysmolek

Abstract:

Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451.

Keywords: atomic force microscopy, hexagonal boron nitride, optical properties, raman spectroscopy

Procedia PDF Downloads 173
1058 Assessment of Advanced Oxidation Process Applicability for Household Appliances Wastewater Treatment

Authors: Pelin Yılmaz Çetiner, Metin Mert İlgün, Nazlı Çetindağ, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an inevitable problem affecting more and more people day by day. It is a worldwide crisis and a consequence of rapid population growth, urbanization and overexploitation. Thus, the solutions providing the reclamation of the wastewater are the desired approach. Wastewater contains various substances such as organic, soaps and detergents, solvents, biological substances, and inorganic substances. The physical properties of the wastewater differs regarding to its origin such as commerical, domestic or hospital usage. Thus, the treatment strategy of this type of wastewater is should be comprehensively investigated and properly treated. The advanced oxidation process comes up as a hopeful method associated with the formation of reactive hydroxyl radicals that are highly reactive to oxidize of organic pollutants. This process has a priority on other methods such as coagulation, flocuation, sedimentation and filtration since it was not cause any undesirable by-products. In the present study, it was aimed to investigate the applicability of advanced oxidation process for the treatment of household appliances wastewater. For this purpose, the laboratory studies providing the effectively addressing of the formed radicals to organic pollutants were carried out. Then the effect of process parameters were comprehensively studied by using response surface methodology, Box-Benhken experimental desing. The final chemical oxygen demand (COD) was the main output to evaluate the optimum point providing the expected COD removal. The linear alkyl benzene sulfonate (LAS), total dissolved solids (TDS) and color were measured for the optimum point providing the expected COD removal. Finally, present study pointed out that advanced oxidation process might be efficiently preffered to treat of the household appliances wastewater and the optimum process parameters provided that expected removal of COD.

Keywords: advanced oxidation process, household appliances wastewater, modelling, water reuse

Procedia PDF Downloads 64
1057 Application of Hydrological Engineering Centre – River Analysis System (HEC-RAS) to Estuarine Hydraulics

Authors: Julia Zimmerman, Gaurav Savant

Abstract:

This study aims to evaluate the efficacy of the U.S. Army Corp of Engineers’ River Analysis System (HEC-RAS) application to modeling the hydraulics of estuaries. HEC-RAS has been broadly used for a variety of riverine applications. However, it has not been widely applied to the study of circulation in estuaries. This report details the model development and validation of a combined 1D/2D unsteady flow hydraulic model using HEC-RAS for estuaries and they are associated with tidally influenced rivers. Two estuaries, Galveston Bay and Delaware Bay, were used as case studies. Galveston Bay, a bar-built, vertically mixed estuary, was modeled for the 2005 calendar year. Delaware Bay, a drowned river valley estuary, was modeled from October 22, 2019, to November 5, 2019. Water surface elevation was used to validate both models by comparing simulation results to NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) gauge data. Simulations were run using the Diffusion Wave Equations (DW), the Shallow Water Equations, Eulerian-Lagrangian Method (SWE-ELM), and the Shallow Water Equations Eulerian Method (SWE-EM) and compared for both accuracy and computational resources required. In general, the Diffusion Wave Equations results were found to be comparable to the two Shallow Water equations sets while requiring less computational power. The 1D/2D combined approach was valid for study areas within the 2D flow area, with the 1D flow serving mainly as an inflow boundary condition. Within the Delaware Bay estuary, the HEC-RAS DW model ran in 22 minutes and had an average R² value of 0.94 within the 2-D mesh. The Galveston Bay HEC-RAS DW ran in 6 hours and 47 minutes and had an average R² value of 0.83 within the 2-D mesh. The longer run time and lower R² for Galveston Bay can be attributed to the increased length of the time frame modeled and the greater complexity of the estuarine system. The models did not accurately capture tidal effects within the 1D flow area.

Keywords: Delaware bay, estuarine hydraulics, Galveston bay, HEC-RAS, one-dimensional modeling, two-dimensional modeling

Procedia PDF Downloads 199
1056 Regeneration Nature of Rumex Species Root Fragment as Affected by Desiccation

Authors: Khalid Alshallash

Abstract:

Small fragments of the roots of some Rumex species including R. obtusifolius and R. crispus have been found to regenerate readily, contributing to the severity of infestations by these very common, widespread and difficult to control perennial weeds of agricultural crops and grasslands. Their root fragments are usually created during routine agricultural practices. We found that fresh root fragments of both species containing 65-70 % of moisture, progressively lose their moisture content when desiccated under controlled growth room conditions matching summer weather of southeast England, with the greatest reduction occurring in the first 48 hours. Probability of shoot emergence and the time taken for emergence in glasshouse conditions were also reduced significantly by desiccation, with R. obtusifolius least affected up to 48-hour. However, the effects converged after 120 hours. In contrast, R. obtusifolius was significantly slower to emerge after up to 48 hours desiccation, again effects converging after longer periods, R. crispus entirely failed to emerge at 120 hours. The dry weight of emerged shoots was not significantly different between the species, until desiccated for 96 hours when R. obtusifolius was significantly reduced. At 120 hours, R. obtusifolius did not emerge. In outdoor trials, desiccation for 24 or 48 hours had less effect on emergence when planted at the soil surface or up to 10 cm of depth, compared to deeper plantings. In both species, emergence was significantly lower when desiccated fragments were planted at 15 or 20 cm. Time taken for emergence was not significantly different between the species until planted at 15 or 20 cm when R. obtusifolius was slower than R. crispus and reduced further by increasing desiccation. Similar variation in effects of increasing soil depth interacting with increasing desiccation was found in reductions in dry weight, the number of tillers and leaf area, with R obtusifolius generally but not exclusively better able to withstand more extreme trial conditions. Our findings suggest that infestations of these highly troublesome weeds may be partly controlled by appropriate agricultural practices, notably exposing cut fragments to drying environmental conditions followed by deep burial.

Keywords: regeneration, root fragment, rumex crispus, rumex obtusifolius

Procedia PDF Downloads 98
1055 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 135
1054 Scheduling Building Projects: The Chronographical Modeling Concept

Authors: Adel Francis

Abstract:

Most of scheduling methods and software apply the critical path logic. This logic schedule activities, apply constraints between these activities and try to optimize and level the allocated resources. The extensive use of this logic produces a complex an erroneous network hard to present, follow and update. Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic, and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. The objective of the space planning is to link the spatial and temporal aspects, promote efficient use of the site, define optimal site occupancy rates, and ensures suitable rotation of the workforce in the different spaces. The Chronographic scheduling modelling belongs to this category and models construction operations as well as their processes, logical constraints, association and organizational models, which help to better illustrate the schedule information using multiple flexible approaches. The model defined three categories of areas (punctual, surface and linear) and four different layers (space creation, systems, closing off space, finishing, and reduction of space). The Chronographical modelling is a more complete communication method, having the ability to alternate from one visual approach to another by manipulation of graphics via a set of parameters and their associated values. Each individual approach can help to schedule a certain project type or specialty. Visual communication can also be improved through layering, sheeting, juxtaposition, alterations, and permutations, allowing for groupings, hierarchies, and classification of project information. In this way, graphic representation becomes a living, transformable image, showing valuable information in a clear and comprehensible manner, simplifying the site management while simultaneously utilizing the visual space as efficiently as possible.

Keywords: building projects, chronographic modelling, CPM, critical path, precedence diagram, scheduling

Procedia PDF Downloads 155
1053 Mapping and Database on Mass Movements along the Eastern Edge of the East African Rift in Burundi

Authors: L. Nahimana

Abstract:

The eastern edge of the East African Rift in Burundi shows many mass movement phenomena corresponding to landslides, mudflow, debris flow, spectacular erosion (mega-gully), flash floods and alluvial deposits. These phenomena usually occur during the rainy season. Their extent and consecutive damages vary widely. To manage these phenomena, it is necessary to adopt a methodological approach of their mapping with a structured database. The elements for this database are: three-dimensional extent of the phenomenon, natural causes and conditions (geological lithology, slope, weathering depth and products, rainfall patterns, natural environment) and the anthropogenic factors corresponding to the various human activities. The extent of the area provides information about the possibilities and opportunities for mitigation technique. The lithological nature allows understanding the influence of the nature of the rock and its structure on the intensity of the weathering of rocks, as well as the geotechnical properties of the weathering products. The slope influences the land stability. The intensity of annual, monthly and daily rainfall helps to understand the conditions of water saturation of the terrains. Certain natural circumstances such as the presence of streams and rivers promote foot slope erosion and thus the occurrence and activity of mass movements. The construction of some infrastructures such as new roads and agglomerations deeply modify the flow of surface and underground water followed by mass movements. Using geospatial data selected on the East African Rift in Burundi, it is presented case of mass movements illustrating the nature, importance, various factors and the extent of the damages. An analysis of these elements for each hazard can guide the options for mitigation of the phenomenon and its consequences.

Keywords: mass movement, landslide, mudflow, debris flow, spectacular erosion, mega-gully, flash flood, alluvial deposit, East African rift, Burundi

Procedia PDF Downloads 306
1052 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair

Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen

Abstract:

Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.

Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel

Procedia PDF Downloads 132
1051 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 87
1050 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments

Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie

Abstract:

Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.

Keywords: antibody engineering, biosensor, phage display, unnatural amino acids

Procedia PDF Downloads 146
1049 Analysis of the Contribution of Coastal and Marine Physical Factors to Oil Slick Movement: Case Study of Misrata, Libya

Authors: Abduladim Maitieg, Mark Johnson

Abstract:

Developing a coastal oil spill management plan for the Misratah coast is the motivating factor for building a database for coastal and marine systems and energy resources. Wind direction and speed, currents, bathymetry, coastal topography and offshore dynamics influence oil spill deposition in coastal water. Therefore, oceanographic and climatological data can be used to understand oil slick movement and potential oil deposits on shoreline area and the behaviour of oil spill trajectories on the sea surface. The purpose of this study is to investigate the effects of the coastal and marine physical factors under strong wave conditions and various bathymetric and coastal topography gradients in the western coastal area of Libya on the movement of oil slicks. The movement of oil slicks was computed using a GNOME simulation model based on current and wind speed/direction. The results in this paper show that (1) Oil slick might reach the Misratah shoreline area in two days in the summer and winter. Seasons. (2 ) The North coast of Misratah is the potential oil deposit area on the Misratah coast. (3) Tarball pollution was observed along the North coast of Misratah. (4) Two scenarios for the summer and the winter season were run, along the western coast of Libya . (5) The eastern coast is at a lower potential risk due to the influence of wind and current energy in the Gulf of Sidra. (6) The Misratah coastline is more vulnerable to oil spill movement in the summer than in winter seasons. (7) Oil slick takes from 2 to 5 days to reach the saltmarsh in the eastern Misratah coast. (8) Oil slick moves 300 km in 30 days from the spill resource location near the Libyan western border to the Misratah coast.(9) Bathymetric features have a profound effect on oil spill movement. (9)Oil dispersion simulations using GNOME are carried out taking into account high-resolution wind and current data.

Keywords: oil spill movement, coastal and marine physical factors, coast area, Libyan

Procedia PDF Downloads 227
1048 Estimation of Physico-Mechanical Properties of Tuffs (Turkey) from Indirect Methods

Authors: Mustafa Gok, Sair Kahraman, Mustafa Fener

Abstract:

In rock engineering applications, determining uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and basic index properties such as density, porosity, and water absorption is crucial for the design of both underground and surface structures. However, obtaining reliable samples for direct testing, especially from rocks that weather quickly and have low strength, is often challenging. In such cases, indirect methods provide a practical alternative to estimate the physical and mechanical properties of these rocks. In this study, tuff samples collected from the Cappadocia region (Nevşehir) in Turkey were subjected to indirect testing methods. Over 100 tests were conducted, using needle penetrometer index (NPI), point load strength index (PLI), and disc shear index (BPI) to estimate the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), density, and water absorption index of the tuffs. The relationships between the results of these indirect tests and the target physical properties were evaluated using simple and multiple regression analyses. The findings of this research reveal strong correlations between the indirect methods and the mechanical properties of the tuffs. Both uniaxial compressive strength and Brazilian tensile strength could be accurately predicted using NPI, PLI, and BPI values. The regression models developed in this study allow for rapid, cost-effective assessments of tuff strength in cases where direct testing is impractical. These results are particularly valuable for geological engineering applications, where time and resource constraints exist. This study highlights the significance of using indirect methods as reliable predictors of the mechanical behavior of weak rocks like tuffs. Further research is recommended to explore the application of these methods to other rock types with similar characteristics. Further research is required to compare the results with those of established direct test methods.

Keywords: brazilian tensile strength, disc shear strength, indirect methods, tuffs, uniaxial compressive strength

Procedia PDF Downloads 16
1047 Identification of Genes Regulating Differentiation and Stemness of Human Mesenchymal Stem Cells for Gene Therapy in Regenerative Medicine

Authors: Tong Ming Liu

Abstract:

Human mesenchymal stem cells (MSCs) represent the most used stem cells for clinical application, which have been used in over 1000 clinical trials to treat over 30 diseases due to multilineage differentiation potential, secretome and immunosuppression. Gene therapies of MSCs hold great promise in the treatment of many diseases due to enhanced MSC-based clinical outcomes. To identify genes for gene therapy of MSCs, by comparing gene expression profile before and after MSC differentiation following by functional screening, we have identified ZNF145 that regulated MSC differentiation. Forced expression of ZNF145 resulted in enhanced in vitro chondrogenesis of MSCs as an upstream factor of SOX9 and improved osteochondral repair upon implant into osteochondral defects in rodents. By comparing gene expression profile during differentiation of iPSCs toward MSCs, we also identified gene HOX regulating MSC stemness, which was much downregulated in late-passaged MSCs. Knockdown of this gene greatly compromised MSC stemness including abolished proliferation, decreased CFU-F, promoted senescence and reduced expression of cell surface antigens linked to the MSC phenotype. In addition, multi-linage differentiation was also greatly impaired. Notably, HOX overexpression resulted in improved multi-lineage differentiation. In the mechanism, HOX expression significantly deceased in late passage of MSCs compared with early passage of MSCs, correlating with MSC important genes. ChIP-seq data shown that HOX binds to genes related to MSC self-renewal and differentiation. Most importantly, most HOX binding sites are lost in late passage of MSCs. HOX exerts its effects by directing binding Twist1, one important gene of MSCs. The identification of the genes regulating MSC differentiation and stemness will provide and promising strategies for gene therapy of MSCs in regenerative medicine.

Keywords: mesenchymal stem cell, novel transcription factor, stemness, gene therapy, cartilage repair, signaling pathway

Procedia PDF Downloads 57
1046 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties

Authors: Akbar Esmaeili, Mahnoosh Aliahmadi

Abstract:

This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.

Keywords: nanocapsules, technolgy, biology, nano

Procedia PDF Downloads 40
1045 The Effect of Air Injection in Irrigation Water on Sugar Beet Yield

Authors: Yusuf Ersoy Yildirim, Ismail Tas, Ceren Gorgusen, Tugba Yeter, Aysegul Boyacioglu, K. Mehmet Tugrul, Murat Tugrul, Ayten Namli, H. Sabri Ozturk, M. Onur Akca

Abstract:

In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained.

Keywords: sugar beet, subsurface drip irrigation, air application, irrigation efficiency

Procedia PDF Downloads 81
1044 Antagonist Coactivation in Athletes Following Anterior Cruciate Ligament Reconstruction

Authors: Milad Pirali, Sohrab Keyhani, Mohhamad Ali Sanjari, Ali Ashraf Jamshidi

Abstract:

Purpose: The effect of hamstring antagonist activity on the knee extensors torque of the Anterior Cruciate Ligament reconstruction (ACLR) is not clear and persistent muscle weakness is common after ACLR. Hamstring activation when acting as antagonist is considered very important for knee strengths. Therefore the purpose of this study was to examine hamstring antagonist coactivation during maximal effort of the isokinetic knee extension in ACLR athletes with hamstring autograft. Materials and Methods: We enrolled 20 professional athletes who underwent primary ACLR (hamstring tendon autograft)with 6-24 months postoperative and 20 healthy subjects as control group. Each subjects performed maximal effort isokinetic knee extension and flexion in 60/˚ s and 180/˚ s velocities for the involved and uninvolved limb. Synchronously, surface electromyography (EMG) was recorded of vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF). The antagonist integrated EMG (IEMG) values were normalized to the IEMG of the same muscle during maximal isokinetic eccentric effort at the same velocities and ROM. Results: A one-way analysis of variance designs shows significantly greater IEMG coactivation of hamstring and decreased activation of Vm in ACLR when compared to uninvolved and control group leg in 60/˚ s and 180/˚ s velocities. Likewise peak torque to body weight was decreased in ACLR compared to uninvolved and control group during knee extension in both velocities (p < 0.05). Conclusions: Decreased extensors moment caused by decreased quadriceps inhibition and increased hamstring coactivation. In addition, these result indicated to decrease of motor unit recruitment in the VM (as a kinesiologicmonitore of the knee). It is appearing that strengthening of the quadriceps to be an important for rehabilitation program after ACLR for preparation in athletes endeavors. Therefore, we suggest that having more emphasis and focus on quadriceps strength and less emphasis on hamstring following ACLR.

Keywords: ACLR-coactivation, dynamometry, electromyography, isokinetic

Procedia PDF Downloads 254
1043 Microfluidic Chambers with Fluid Walls for Cell Biology

Authors: Cristian Soitu, Alexander Feuerborn, Cyril Deroy, Alfonso Castrejon-Pita, Peter R. Cook, Edmond J. Walsh

Abstract:

Microfluidics now stands as an academically mature technology after a quarter of a century research activities have delivered a vast array of proof of concepts for many biological workflows. However, translation to industry remains poor, with only a handful of notable exceptions – e.g. digital PCR, DNA sequencing – mainly because of biocompatibility issues, limited range of readouts supported or complex operation required. This technology exploits the domination of interfacial forces over gravitational ones at the microscale, replacing solid walls with fluid ones as building blocks for cell micro-environments. By employing only materials used by biologists for decades, the system is shown to be biocompatible, and easy to manufacture and operate. The method consists in displacing a continuous fluid layer into a pattern of isolated chambers overlaid with an immiscible liquid to prevent evaporation. The resulting fluid arrangements can be arrays of micro-chambers with rectangular footprint, which use the maximum surface area available, or structures with irregular patterns. Pliant, self-healing fluid walls confine volumes as small as 1 nl. Such fluidic structures can be reconfigured during the assays, giving the platform an unprecedented level of flexibility. Common workflows in cell biology are demonstrated – e.g. cell growth and retrieval, cloning, cryopreservation, fixation and immunolabeling, CRISPR-Cas9 gene editing, and proof-of-concept drug tests. This fluid-shaping technology is shown to have potential for high-throughput cell- and organism-based assays. The ability to make and reconfigure on-demand microfluidic circuits on standard Petri dishes should find many applications in biology, and yield more relevant phenotypic and genotypic responses when compared to standard microfluidic assays.

Keywords: fluid walls, micro-chambers, reconfigurable, freestyle

Procedia PDF Downloads 193
1042 A Review on Investigating the Relations between Water Harvesting and Water Conflicts

Authors: B. Laurita

Abstract:

The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.

Keywords: arid areas, governance, water conflicts, water harvesting

Procedia PDF Downloads 203
1041 Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification

Authors: Young Nam Chun, Soo Hyuk Yun, Byeo Ri Jeong

Abstract:

The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044).

Keywords: microwave heating, pyrolysis gasification, precombustion CCS, sewage sludge, biomass energy

Procedia PDF Downloads 321
1040 Resveratrol-Phospholipid Complex for Sustained Delivery of Resveratrol via the Skin for the Treatment of Inflammatory Diseases

Authors: Malay K. Das, Bhupen Kalita

Abstract:

The poor oral bioavailability of resveratrol (RSV) due to presystemic metabolism can be avoided via dermal route of administration. The hydrophilic-lipophilic nature of resveratrol-phospholipid complex (RSVPs) favors the delivery of resveratrol via the skin. The RSVPs embedded polymeric patch with moderate adhesiveness was developed for dermal application for sustained anti-inflammatory effect. The prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. The dermal flux of the optimized patch formulation was found to be at 4.28 ± 0.48 mg/cm2/24 h. The analysis of skin extract after permeation study revealed the presence of resveratrol, which confirmed the localization of RSVPs in the skin. The stability of RSVPs in the polymeric patch and the physiologic environment was confirmed by FE-SEM studies on the patches after drug release and skin permeation studies. The RSVPs particles released from the polymer matrix maintaining the structural integrity and permeate the keratinized horney layer of skin. The optimized patch formulation showed sustained anti-inflammatory effect (84.10% inhibition of inflammation at 24 h) in carrageenan-induced rat paw edema model compared to marketed diclofenac sodium gel (39.58% inhibition of inflammation at 24 h). The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained anti-inflammatory effect. Histological studies with phase contrast trinocular microscope suggested no alteration of skin integrity and no evidence of the presence of inflammatory cells after exposure to the permeants. The patch was found to be safe for skin application as evaluated by Draize method for skin irritation scoring in a rabbit model. These results suggest the therapeutic efficacy of the developed patch in both acute and chronic inflammatory diseases.

Keywords: resveratrol-phospholipid complex, skin delivery, sustained anti-inflammatory effect, inflammatory diseases, dermal patch

Procedia PDF Downloads 230
1039 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model

Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka

Abstract:

The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.

Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing

Procedia PDF Downloads 300
1038 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 68
1037 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment

Authors: K. Sushma Varma, Rajesh Singh

Abstract:

Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.

Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria

Procedia PDF Downloads 102
1036 CICAP: Promising Wound Healing Gel from Bee Products and Medicinal Plants

Authors: Laïd Boukraâ

Abstract:

Complementary and Alternative Medicine is an inclusive term that describes treatments, therapies, and modalities that are not accepted as components of mainstream education or practice, but that are performed on patients by some practitioners. While these treatments and therapies often form part of post-graduate education, study and writing, they are generally viewed as alternatives or complementary to more universally accepted treatments. Ancient civilizations used bee products and medicinal plants, but modern civilization and ‘education’ have seriously lessened our natural instinctive ability and capability. Despite the fact that the modern Western establishment appears to like to relegate apitherapy and aromatherapy to the status of 'folklore' or 'old wives' tales', they contain a vast spread of pharmacologically-active ingredients and each one has its own unique combination and properties. They are classified in modern herbal medicine according to their spheres of action. Bee products and medicinal plants are well-known natural product for their healing properties and their increasing popularity recently as they are widely used in wound healing. Honey not only has antibacterial properties which can help as an antibacterial agent but also has chemical properties which may further help in the wound healing process. A formulation with honey as its main component was produced into a honey gel. This new formulation has enhanced texture and is more user friendly for usage as well. This new formulation would be better than other formulas as it is hundred percent consisting of natural products and has been made into a better formulation. In vitro assay, animal model study and clinical trials have shown the effectiveness of LEADERMAX for the treatment of diabetic foot, burns, leg ulcer and bed sores. This one hundred percent natural product could be the best alternative to conventional products for wound and burn management. The advantages of the formulation are: 100% natural, affordable, easy to use, strong power of absorption, dry surface on the wound making a film, will not stick to the wound bed; helps relieve wound pain, inflammation, edema and bruising while improving comfort.

Keywords: bed sore bee products, burns, diabetic foot, medicinal plants, leg ulcer, wounds

Procedia PDF Downloads 337