Search results for: zero net energy
2084 Three-Dimensional CFD Modeling of Flow Field and Scouring around Bridge Piers
Authors: P. Deepak Kumar, P. R. Maiti
Abstract:
In recent years, sediment scour near bridge piers and abutment is a serious problem which causes nationwide concern because it has resulted in more bridge failures than other causes. Scour is the formation of scour hole around the structure mounted on and embedded in erodible channel bed due to the erosion of soil by flowing water. The formation of scour hole around the structures depends upon shape and size of the pier, depth of flow as well as angle of attack of flow and sediment characteristics. The flow characteristics around these structures change due to man-made obstruction in the natural flow path which changes the kinetic energy of the flow around these structures. Excessive scour affects the stability of the foundation of the structure by the removal of the bed material. The accurate estimation of scour depth around bridge pier is very difficult. The foundation of bridge piers have to be taken deeper and to provide sufficient anchorage length required for stability of the foundation. In this study, computational model simulations using a 3D Computational Fluid Dynamics (CFD) model were conducted to examine the mechanism of scour around a cylindrical pier. Subsequently, the flow characteristics around these structures are presented for different flow conditions. Mechanism of scouring phenomenon, the formation of vortex and its consequent effect is discussed for a straight channel. Effort was made towards estimation of scour depth around bridge piers under different flow conditions.Keywords: bridge pier, computational fluid dynamics, multigrid, pier shape, scour
Procedia PDF Downloads 2962083 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation
Procedia PDF Downloads 3082082 A Framework for Railway Passenger Station Site Selection Using Transit-Oriented Development and Urban Regeneration Approaches
Authors: M. Taghavi Zavareh, H. Saremi
Abstract:
Railway transportation is one of the types of transportation systems which, due to the advantages such as the ability to transport a large number of passengers, environmental protection, low energy consumption, and contribution to tourism, has importance. The existence of suitable and accessible stations is one of the requirements that leads to better performance and plays a significant role in the economic, social, political, and cultural development of urban areas. This paper aims to propose a framework for locating railway passenger stations. This research used descriptive-analytical methods and library tools to answer which definitions and theoretical approaches are suitable for the location of railway passenger stations. The results showed that theoretical approaches such as Transit-Oriented Development and Urban Regeneration are of the utmost importance theoretical bases in the field of research. Moreover, we studied three stations in Iran to find out about real trends and criteria in this research. This study also proposed four major criteria including accessibility, development, rail related and economics, and environmental harmony. Ultimately with an emphasis on the proposed criteria, the study concludes that the combination of Transit-Oriented Development and Urban Regeneration is the most suitable framework to locate railway passenger stations.Keywords: railway passenger station, railway station, site selection, transit-oriented development, urban regeneration
Procedia PDF Downloads 2692081 Discovering New Organic Materials through Computational Methods
Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner
Abstract:
Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings
Procedia PDF Downloads 2532080 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device
Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng
Abstract:
The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect
Procedia PDF Downloads 4122079 Sensitivity and Reliability Analysis of Masonry Infilled Frames
Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar
Abstract:
The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.Keywords: fragility curve, sensitivity analysis, reliability index, RC frames
Procedia PDF Downloads 3232078 Properties of Concrete with Wood Ashes in Construction Engineering
Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht
Abstract:
Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC
Procedia PDF Downloads 1442077 Attitudinal Change: A Major Therapy for Non–Technical Losses in the Nigerian Power Sector
Authors: Fina O. Faithpraise, Effiong O. Obisung, Azele E. Peter, Chris R. Chatwin
Abstract:
This study investigates and identifies consumer attitude as a major influence that results in non-technical losses in the Nigerian electricity supply sector. This discovery is revealed by the combination of quantitative and qualitative research to complete a survey. The dataset employed is a simple random sampling of households using electricity (public power supply), and the number of units chosen is based on statistical power analysis. The units were subdivided into two categories (household with and without electrical meters). The hypothesis formulated was tested and analyzed using a chi-square statistical method. The results obtained shows that the critical value for the household with electrical prepared meter (EPM) was (9.488 < 427.4) and those without electrical prepared meter (EPMn) was (9.488 < 436.1) with a p-value of 0.01%. The analysis demonstrated so far established the real-time position, which shows that the wrong attitude towards handling the electricity supplied (not turning off light bulbs and electrical appliances when not in use within the rooms and outdoors within 12 hours of the day) characterized the non-technical losses in the power sector. Therefore the adoption of efficient lighting attitudes in individual households as recommended by the researcher is greatly encouraged. The results from this study should serve as a model for energy efficiency and use for the improvement of electricity consumption as well as a stable economy.Keywords: attitudinal change, household, non-technical losses, prepared meter
Procedia PDF Downloads 1792076 Effect of High Volume processed Fly Ash on Engineering Properties of Concrete
Authors: Dhara Shah, Chandrakant Shah
Abstract:
As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete.Keywords: processed fly ash, engineering properties of concrete, pozzolanic, lime content
Procedia PDF Downloads 3352075 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells
Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser
Abstract:
Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.Keywords: cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security
Procedia PDF Downloads 3262074 Perception of Indoor Environmental Qualities in Residential Buildings: A Quantitative Case Survey for Turkey and Iran
Authors: Majid Bahramian, Kaan Yetilmezsoy
Abstract:
Environmental performance of residential buildings been a hotspot for the research community, however, the indoor environmental quality significantly overlooked in the literature. The paper is motivated by the understanding of the occupants from the indoor environmental qualities and seeks to find the satisfaction level in two high-rise green-certified residential buildings. Views of more than 250 respondents in each building were solicited on 15 Indoor Environmental Qualities (IEQ) parameters. Findings suggest that occupants are generally satisfied with five critical aspects of IEQ, but some unsatisfaction exists during operation phase. The results also indicate that the green build certification systems for new buildings have some deficiencies which affect the actual environmental performance of green buildings during operation. Some reasons were suggested by the occupants of which the design-focus construction and lack of monitoring after certification were the most critical factors. Among the crucial criteria for environmental performance assessment of green buildings, energy saving, reduction of Greenhouse Gases (GHG) emissions, environmental impacts on neighborhood area, waste reduction and IEQs, were the most critical factors dominating the performance, in a descending order. This study provides valuable information on the performance of IEQ parameters of green building and gives a deeper understanding for stakeholders and companies involved in construction sector with the relevant feedback for their decision-making on current and future projects.Keywords: indoor environmental qualities, green buildings, occupant satisfaction, environmental performance
Procedia PDF Downloads 862073 Freeform Lens System for Collimation SERS irradiation Radiation Produced by Biolayers which Deposit on High Quality Resonant System
Authors: Iuliia Riabenko, Konstantin Beloshenko, Sergey Shulga, Valeriy Shulga
Abstract:
An optical system has been developed consisting of a TIR lens and an aspherical surface designed to collect Stokes radiation from biomolecules. The freeform material is SYLGARD-184, which provides a low level of noise associated with the luminescence of the substrate. The refractive index of SYLGARD-184 is 1.4028 for a wavelength of 632 nm, the Abbe number is 72, these material parameters make it possible to design the desired shape for the wavelength range of 640-700 nm. The system consists of a TIR lens, inside which is placed a high-quality resonant system consisting of a biomolecule and a metal colloid. This system can be described using the coupled oscillator model. The laser excitation radiation was fed through the base of the TIR lens. The sample was mounted inside the TIR lens at a distance of 8 mm from the base. As a result of Raman scattering of laser radiation, a Stokes bend appeared from the biolayer. The task of this work was that it was necessary to collect this radiation emitted at a 4π steradian angle. For this, an internal aspherical surface was used, which made it possible to defocus the beam emanating from the biolayer and direct its radiation to the borders of the TIR lens at the Brewster angle. The collated beam of Stokes radiation contains 97% of the energy scattered by the biolayer. Thus, a simple scheme was proposed for collecting and collimating the Stokes radiation of biomolecules.Keywords: TIR lens, freeform material, raman scattering, biolayer, brewster angle
Procedia PDF Downloads 1382072 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia
Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.
Abstract:
High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layersKeywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water
Procedia PDF Downloads 722071 Mechanical Characterization and Durability of Eco-Efficient Ultra High Performance Concrete
Authors: Valeria Corinaldesi, Nicola Generosi, Jacopo Donnini
Abstract:
Ultra high performance concrete (UHPC) is an innovative material which tends to exhibit superior properties such as incredible mechanical and durability performance and non-brittleness behavior. Over the last twenty years, phenomenal advances have taken place in the research and application of UHPC. Recently, the approach is to improve UHPC sustainability by reducing its embodied energy. First of all, this goal can be achieved by reducing Portland cement dosage. In this work, an experimental investigation was carried out to characterize the mechanical behavior and durability of UHPCs prepared by reducing the cement amount by 30% in order to verify the impact of lower cement content and higher water-to-cement ratio on both mechanical performance and durability, if any. Eight different UHPC mixtures were compared, with two different cement dosages (either 1000 or 700 kg) and four different brass-coated steel fibres dosages (0 - 50 - 100 - 150 kg), in terms of 28-day compressive and flexural strengths. Then, the mixtures prepared with the lower cement content were further investigated in terms of abrasion resistance, water absorption, freezing and thawing cycles, and resistance to sulphate attack. Results obtained showed the feasibility of reducing cement dosage without compromising mechanical performance and UHPC's extraordinary durability.Keywords: abrasion resistance, durability, eco-efficiency, freeze-thawing cycles, steel fibres, sulphate exposure, sustainability, UHPC
Procedia PDF Downloads 762070 Vegan Low Glycemic Index Diet in Appetite Reduction Among Polycystic Ovarian Syndrome (PCOS) Patients Carrying Melanocortin 4 Receptor (MC4R) Variants of (rs12970134), and (rs17782313): A Mini Review
Authors: Jumanah S. Alawfi
Abstract:
Polycystic ovary syndrome (PCOS) is a common endocrinopathy among females in their reproductive years. The incidence cases are nearly 1.55 million among females across the globe, with 0.43 million associated disability-adjusted life-years (DALYs). This syndrome is associated with intricate mechanisms typically characterized by insulin resistance (IR), infertility, overweight and/or obesity. Lifestyle interventions are often prescribed as an adjective treatment. Nonetheless, obesity is a complex disease that encompasses multiple dimensions, such as excessive energy intake and genetics. The melanocortin 4 receptor mutation (MC4R) is an important mediator in appetite. There is emerging evidence that suggests its role in the Body Mass Index (BMI) among PCOS subjects, which poses the question of obesity and/or overweight among the PCOS patients who carry the MC4R variants may be caused by overconsumption. Thereby, using other satiety techniques may be beneficial as a part of personalized nutrition. Therefore, the aim of the current mini-review is to discuss the effect of the vegan low glycemic diet on reducing appetite among PCOS patients. The review shows that there is a gap in the knowledge of the effect of the vegan diet on PCOS patients who carry MC4R variants which need further research.Keywords: polycystic ovarian syndrome (PCOS), Appetite, Melanocortin 4 Receptor Mutation (MC4R)., Obesity
Procedia PDF Downloads 1292069 Standalone Docking Station with Combined Charging Methods for Agricultural Mobile Robots
Authors: Leonor Varandas, Pedro D. Gaspar, Martim L. Aguiar
Abstract:
One of the biggest concerns in the field of agriculture is around the energy efficiency of robots that will perform agriculture’s activity and their charging methods. In this paper, two different charging methods for agricultural standalone docking stations are shown that will take into account various variants as field size and its irregularities, work’s nature to which the robot will perform, deadlines that have to be respected, among others. Its features also are dependent on the orchard, season, battery type and its technical specifications and cost. First charging base method focuses on wireless charging, presenting more benefits for small field. The second charging base method relies on battery replacement being more suitable for large fields, thus avoiding the robot stop for recharge. Existing many methods to charge a battery, the CC CV was considered the most appropriate for either simplicity or effectiveness. The choice of the battery for agricultural purposes is if most importance. While the most common battery used is Li-ion battery, this study also discusses the use of graphene-based new type of batteries with 45% over capacity to the Li-ion one. A Battery Management Systems (BMS) is applied for battery balancing. All these approaches combined showed to be a promising method to improve a lot of technical agricultural work, not just in terms of plantation and harvesting but also about every technique to prevent harmful events like plagues and weeds or even to reduce crop time and cost.Keywords: agricultural mobile robot, charging methods, battery replacement method, wireless charging method
Procedia PDF Downloads 1492068 An Equitable Strategy to Amend Zero-Emission Vehicles Incentives for Travelers: A Policy Review
Authors: Marie Louis
Abstract:
Even though many stakeholders are doing their very best to promote public transportation around the world, many areas are still public transportation non-accessible. With travelers purchasing and driving their private vehicles can be considered as a threat to all three aspects of the sustainability (e.g., economical, social, environmental). However, most studies that considered simultaneously all three aspects of the sustainability concept when planning and designing public transportation for a corridor have found tradeoffs among the said three aspects.One of the tradeoffs was identified by looking at tipping points of the travel demands to question whether transit agencies/and or transportation policymakers should either operate smaller buses or provide incentives to purchase Leadership in Energy and Environmental Design (LEED)-Qualified low-emission vehicles or greener vehicles (e.g., hybrid). However, how and when do the department of environmental protection (DEP) and the department of revenue (DOR) figure out how much incentives to give to each traveler who lives in a zoning that is considered as public transportation inaccessible or accessible? To answer this policy question, this study aims to compare the greenhouse gases (GHGs) emissions when hybrid and conventional cars are used to access public transportation stops/stations. Additionally, this study also intends to review previous states that have already adopted low-emissions vehicle (LEVs) or Zero-Emissions Vehicles (ZEVs) to diminish the daily GHGs pollutants.Keywords: LEED-qualified vehicles, public transit accessibility, hybrid vehicles incentives, sustainability trade-offs
Procedia PDF Downloads 1952067 Food Irradiation in the Third Sector Development and Validation of Questionnaire to Standard Measuring Instrument for Evaluation of Acceptance and Sensory Analysis of Irradiated Foods
Authors: Juliana Sagretti, Susy Sabato
Abstract:
Despite the poverty in the world, a third of all food produced in the world is wasted. FAO, the United Nations Organization of Agriculture and Food, points out the need to combine actions and new technologies to combat hunger and waste in contrast to the high production of food in the world. The energy of ionizing radiation in food brought many positive results, such as increased validity and insect infestation control. The food banks are organizations that act at various points of food chain to collect and distribute food to the needy. So, the aim of this study was to initiate a partnership between irradiation and the food bank through the development of a questionnaire to evaluate and disseminate the knowledge and acceptance of individuals in the food bank in Brazil. In addition, this study aimed to standardize a basis questionnaire for future research assessment of irradiated foods. For the construction of the questionnaire as a measuring instrument, a comprehensive and rigorous literature review was made. Its covered qualitative research, questionnaires, sensory evaluation and food irradiated. Three stages of pre - tests were necessary and related fields of experts were consulted. As a result, the questionnaire has three parts, personal issues, assertive issues and questions of multiple choices and finally an informative question. The questionnaire was applied in Ceagesp food bank in the biggest center of food in Brazil (data not shown).Keywords: food bank, food irradiation, food waste, sustainability
Procedia PDF Downloads 3272066 Microwave-Assisted Chemical Pre-Treatment of Waste Sorghum Leaves: Process Optimization and Development of an Intelligent Model for Determination of Volatile Compound Fractions
Authors: Daneal Rorke, Gueguim Kana
Abstract:
The shift towards renewable energy sources for biofuel production has received increasing attention. However, the use and pre-treatment of lignocellulosic material are inundated with the generation of fermentation inhibitors which severely impact the feasibility of bioprocesses. This study reports the profiling of all volatile compounds generated during microwave assisted chemical pre-treatment of sorghum leaves. Furthermore, the optimization of reducing sugar (RS) from microwave assisted acid pre-treatment of sorghum leaves was assessed and gave a coefficient of determination (R2) of 0.76, producing an optimal RS yield of 2.74 g FS/g substrate. The development of an intelligent model to predict volatile compound fractions gave R2 values of up to 0.93 for 21 volatile compounds. Sensitivity analysis revealed that furfural and phenol exhibited high sensitivity to acid concentration, alkali concentration and S:L ratio, while phenol showed high sensitivity to microwave duration and intensity as well. These findings illustrate the potential of using an intelligent model to predict the volatile compound fraction profile of compounds generated during pre-treatment of sorghum leaves in order to establish a more robust and efficient pre-treatment regime for biofuel production.Keywords: artificial neural networks, fermentation inhibitors, lignocellulosic pre-treatment, sorghum leaves
Procedia PDF Downloads 2482065 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability
Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi
Abstract:
There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitizationKeywords: cybersecurity, supply chain methodology, secure substation, digitization
Procedia PDF Downloads 642064 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications
Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia
Abstract:
In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 562063 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides
Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen
Abstract:
CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide
Procedia PDF Downloads 2962062 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal
Authors: Motwkel M. Alhaj, Bashir M. Elhassan
Abstract:
The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.Keywords: water treatment, fluoride, adsorption, charcoal, Sudan
Procedia PDF Downloads 1162061 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still
Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama
Abstract:
A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.Keywords: distillation, solar energy, heat transfer, mass transfer, average height
Procedia PDF Downloads 1442060 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS
Authors: V. Sulakatko, F. U. Vogdt, I. Lill
Abstract:
Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing
Procedia PDF Downloads 2972059 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source
Authors: Baghdasaryan Marinka, Ulikyan Azatuhi
Abstract:
The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power
Procedia PDF Downloads 2352058 Fabrication of Porous Materials for the Removal of Lead from Waste Water
Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang
Abstract:
Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.Keywords: heavy metals, ion exchange, adsorption, water remediation
Procedia PDF Downloads 2492057 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances
Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo
Abstract:
Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.Keywords: hydrogen, methane, combustion, appliances, interchangeability
Procedia PDF Downloads 912056 How to Improve the Environmental Performance in a HEI in Mexico, an EEA Adaptation
Authors: Stephanie Aguirre Moreno, Jesús Everardo Olguín Tiznado, Claudia Camargo Wilson, Juan Andrés López Barreras
Abstract:
This research work presents a proposal to evaluate the environmental performance of a Higher Education Institution (HEI) in Mexico in order to minimize their environmental impact. Given that public education has limited financial resources, it is necessary to conduct studies that support priorities in decision-making situations and thus obtain the best cost-benefit ratio of continuous improvement programs as part of the environmental management system implemented. The methodology employed, adapted from the Environmental Effect Analysis (EEA), weighs the environmental aspects identified in the environmental diagnosis by two characteristics. Number one, environmental priority through the perception of the stakeholders, compliance of legal requirements, and environmental impact of operations. Number two, the possibility of improvement, which depends of factors such as the exchange rate that will be made, the level of investment and the return time of it. The highest environmental priorities, or hot spots, identified in this evaluation were: electricity consumption, water consumption and recycling, and disposal of municipal solid waste. However, the possibility of improvement for the disposal of municipal solid waste is higher, followed by water consumption and recycling, in spite of having an equal possibility of improvement to the energy consumption, time of return and cost-benefit is much greater.Keywords: environmental performance, environmental priority, possibility of improvement, continuous improvement programs
Procedia PDF Downloads 4952055 Marketing Practices of the Urban and Recycled Wood Industry in the United States
Authors: Robert Smith, Omar Espinoza, Anna Pitta
Abstract:
In the United States, trees felled in urban areas and wood generated through construction and demolition are primarily disposed of as low-value resources, such as biomass for energy, landscaping mulch, composting, or landfilled. An emerging industry makes use of these underutilized resources to produce high value-added products, with associated benefits for the environment, the local economy, and consumers. For the circular economy to be successful, markets must be created for sustainable, reusable natural materials. Research was carried out to increase the understanding of the marketing practices of urban and reclaimed wood industries. This paper presents the results of a nationwide survey of these companies. The results indicate that a majority of companies in this industry are small firms, operating for less than 10 years, which produce mostly to order and sell their products at comparatively higher prices than competing products made from virgin natural resources. Promotional messages included quality, aesthetics, and customization, conveyed through company webpages, word of mouth, and social media. Distribution channels used include direct sales, online sales, and retail sales. Partnerships are critical for effective raw material procurement. Respondents indicated optimistic growth expectations, despite barriers associated with urban and reclaimed wood materials and production.Keywords: urban and reclaimed wood, circular economy, marketing, wood products
Procedia PDF Downloads 125