Search results for: external energy sources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12908

Search results for: external energy sources

6638 Studies on the Use of Sewage Sludge in Agriculture or in Incinerators

Authors: Catalina Iticescu, Lucian Georgescu, Mihaela Timofti, Dumitru Dima, Gabriel Murariu

Abstract:

The amounts of sludge resulting from the treatment of domestic and industrial wastewater can create serious environmental problems if no solutions are found to eliminate them. At present, the predominant method of sewage sludge disposal is to store and use them in agricultural applications. The sewage sludge has fertilizer properties and can be used to enrich agricultural soils due to the nutrient content. In addition to plant growth (nitrogen and phosphorus), the sludge also contains heavy metals in varying amounts. An increasingly used method is the incineration of sludge. Thermal processes can be used to convert large amounts of sludge into useful energy. The sewage sludge analyzed for the present paper was extracted from the Wastewater Treatment Station (WWTP) Galati, Romania. The physico-chemical parameters determined were: pH (upH), nutrients and heavy metals. The determination methods were electrochemical, spectrophotometric and energy dispersive X–ray analyses (EDX). The results of the tests made on the content of nutrients in the sewage sludge have shown that existing nutrients can be used to increase the fertility of agricultural soils. The conclusion reached was that these sludge can be safely used on agricultural land and with good agricultural productivity results. To be able to use sewage sludge as a fuel, we need to know its calorific values. For wet sludge, the caloric power is low, while for dry sludge it is high. Higher calorific value and lower calorific value are determined only for dry solids. The apparatus used to determine the calorific power was a Parr 6755 Solution Calorimeter Calorimeter (Parr Instrument Company USA 2010 model). The calorific capacities for the studied sludge indicate that they can be used successfully in incinerators. Mixed with coal, they can also be used to produce electricity. The advantages are: it reduces the cost of obtaining electricity and considerably reduces the amount of sewage sludge.

Keywords: agriculture, incinerators, properties, sewage sludge

Procedia PDF Downloads 160
6637 A Comparative Study of the Athlete Health Records' Minimum Data Set in Selected Countries and Presenting a Model for Iran

Authors: Robab Abdolkhani, Farzin Halabchi, Reza Safdari, Goli Arji

Abstract:

Background and purpose: The quality of health record depends on the quality of its content and proper documentation. Minimum data set makes a standard method for collecting key data elements that make them easy to understand and enable comparison. The aim of this study was to determine the minimum data set for Iranian athletes’ health records. Methods: This study is an applied research of a descriptive comparative type which was carried out in 2013. By using internal and external forms of documentation, a checklist was created that included data elements of athletes health record and was subjected to debate in Delphi method by experts in the field of sports medicine and health information management. Results: From 97 elements which were subjected to discussion, 85 elements by more than 75 percent of the participants (as the main elements) and 12 elements by 50 to 75 percent of the participants (as the proposed elements) were agreed upon. In about 97 elements of the case, there was no significant difference between responses of alumni groups of sport pathology and sports medicine specialists with medical record, medical informatics and information management professionals. Conclusion: Minimum data set of Iranian athletes’ health record with four information categories including demographic information, health history, assessment and treatment plan was presented. The proposed model is available for manual and electronic medical records.

Keywords: Documentation, Health record, Minimum data set, Sports medicine

Procedia PDF Downloads 456
6636 Radionuclide Contents and Exhalation Studies in Soil Samples from Sub-Mountainous Region of Jammu and Kashmir

Authors: Manpreet Kaur

Abstract:

The effect of external and internal exposure in outdoor and indoor environment can be significantly gauged by natural radionuclides. Therefore, it is a consequential to approximate the level of radionuclide contents in soil samples of any area and the risks associated with it. Rate of radon emerging from soil is also one of the prominent parameters for the assessment of radon levels in environmental. In present study, natural radionuclide contents viz. ²³²Th, ²³⁸U and ⁴⁰K and radon/thoron exhalation rates were evaluated operating thallium doped sodium iodide gamma radiation detector and advanced Smart Rn Duo technique in the soil samples from 30 villages of Jammu district, Jammu and Kashmir, India. Radon flux rate was also measured by using surface chamber technique. Results obtained with two different methods were compared to investigate the cause of emanation factor in the soil profile. The radon mass exhalation rate in the soil samples has been found varying from 15 ± 0.4 to 38 ± 0.8 mBq kg⁻¹ h⁻¹ while thoron surface exhalation rate has been found varying from 90 ± 22 to 4880 ± 280 Bq m⁻² h⁻¹. The mean value of radium equivalent activity (99 ± 27 Bq kg⁻¹) was appeared to be well within the admissible limit of 370 Bq kg⁻¹ suggested by Organization for Economic Cooperation and Development (2009) report. The values of various parameters related to radiological hazards were also calculated and all parameters have been found to be well below the safe limits given by various organizations. The outcomes pointed out that region was protected from danger as per health risks effects associated with these radionuclide contents is concerned.

Keywords: absorbed dose rate, exhalation rate, human health, radionuclide

Procedia PDF Downloads 125
6635 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance

Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher

Abstract:

The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.

Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis

Procedia PDF Downloads 25
6634 Application of Self-Efficacy Theory in Counseling Deaf and Hard of Hearing Students

Authors: Nancy A. Delich, Stephen D. Roberts

Abstract:

This case study explores using self-efficacy theory in counseling deaf and hard of hearing students in one California school district. Self-efficacy is described as the confidence a student has for performing a set of skills required to succeed at a specific task. When students need to learn a skill, self-efficacy can be a major factor in influencing behavioral change. Self-efficacy is domain specific, meaning that students can have high confidence in their abilities to accomplish a task in one domain, while at the same time having low confidence in their abilities to accomplish another task in a different domain. The communication isolation experienced by deaf and hard of hearing children and adolescents can negatively impact their belief about their ability to navigate life challenges. There is a need to address issues that impact deaf and hard of hearing students’ social-emotional development. Failure to address these needs may result in depression, suicidal ideation, and anxiety among other mental health concerns. Self-efficacy training can be used to address these socio-emotional developmental issues with this population. Four sources of experiences are applied during an intervention: (a) enactive mastery experience, (b) vicarious experience, (c) verbal persuasion, and (d) physiological and affective states. This case study describes the use of self-efficacy training with a coed group of 12 deaf and hard of hearing high school students who experienced bullying at school. Beginning with enactive mastery experience, the counselor introduced the topic of bullying to the group. The counselor educated the students about the different types of bullying while teaching them the terminology, signs and their meanings. The most effective way to increase self-efficacy is through extensive practice. To better understand these concepts, the students practiced through role-playing with the goal of developing self-advocacy skills. Vicarious experience is the perception that students have about their capabilities. Viewing other students advocating for themselves, cognitively rehearsing what actions they will and will not take, and teaching each other how to stand up against bullying can strengthen their belief in successfully overcoming bullying. The third source of self-efficacy beliefs is verbal persuasion. It occurs when others express belief in the capabilities of the student. Didactic training and pedagogic materials on bullying were employed as part of the group counseling sessions. The fourth source of self-efficacy appraisals is physiological and affective states. Students expect positive emotions to be associated with successful skilled performance. When students practice new skills, the counselor can apply several strategies to enhance self-efficacy while reducing and controlling emotional and physical states. The intervention plan incorporated all four sources of self-efficacy training during several interactive group sessions regarding bullying. There was an increased understanding around the issues of bullying, resulting in the students’ belief of their ability to perform protective behaviors and deter future occurrences. The outcome of the intervention plan resulted in a reduction of reported bullying incidents. In conclusion, self-efficacy training can be an effective counseling and teaching strategy in addressing and enhancing the social-emotional functioning with deaf and hard of hearing adolescents.

Keywords: counseling, self-efficacy, bullying, social-emotional development, mental health, deaf and hard of hearing students

Procedia PDF Downloads 339
6633 Investigation of the Physicochemistry in Leaching of Blackmass for the Recovery of Metals from Spent Lithium-Ion Battery

Authors: Alexandre Chagnes

Abstract:

Lithium-ion battery is the technology of choice in the development of electric vehicles. This technology is now mature, although there are still many challenges to increase their energy density while ensuring an irreproachable safety of use. For this goal, it is necessary to develop new cathodic materials that can be cycled at higher voltages and electrolytes compatible with these materials. But the challenge does not only concern the production of efficient batteries for the electrochemical storage of energy since lithium-ion battery technology relies on the use of critical and/or strategic value resources. It is, therefore, crucial to include Lithium-ion batteries development in a circular economy approach very early. In particular, optimized recycling and reuse of battery components must both minimize their impact on the environment and limit geopolitical issues related to tensions on the mineral resources necessary for lithium-ion battery production. Although recycling will never replace mining, it reduces resource dependence by ensuring the presence of exploitable resources in the territory, which is particularly important for countries like France, where exploited or exploitable resources are limited. This conference addresses the development of a new hydrometallurgical process combining leaching of cathodic material from spent lithium-ion battery in acidic chloride media and solvent extraction process. Most of recycling processes reported in the literature rely on the sulphate route, and a few studies investigate the potentialities of the chloride route despite many advantages and the possibility to develop new chemistry, which could get easier the metal separation. The leaching mechanisms and the solvent extraction equilibria will be presented in this conference. Based on the comprehension of the physicochemistry of leaching and solvent extraction, the present study will introduce a new hydrometallurgical process for the production of cobalt, nickel, manganese and lithium from spent cathodic materials.

Keywords: lithium-ion battery, recycling, hydrometallurgy, leaching, solvent extraction

Procedia PDF Downloads 64
6632 Informed Decision-Making in Classrooms among High School Students regarding Nuclear Power Use in India

Authors: Dinesh N. Kurup, Celine Perriera

Abstract:

The economic development of any country is based on the policies adopted by the government from time to time. If these policies are framed by the opinion of the people of the country, there is need for having strong knowledge base, right from the school level. There should be emphasis to provide in education, an ability to take informed decisions regarding socio-scientific issues. It would be better to adopt this practice in high school classrooms to build capacity among future citizens. This study is an attempt to provide a different approach of teaching and learning in classrooms at the high school level in Indian schools for providing opportunity for informed decision making regarding nuclear power use. A unit of work based on the 5E instructional model about the use of nuclear energy is used to build knowledge base and find out the effectiveness in terms of its influence for taking decisions as a future citizen. A sample of 120 students from three high schools using different curricula and teaching and learning methods were chosen for this study. This research used a design based research method. A pre and post questionnaire based on the theory of reasoned action, structured observations, focus group interviews and opportunity for decision making were used during the intervention. The data analysed qualitatively and quantitatively, and the qualitative data were coded into categories based on responses. The results of the study show that students were able to make informed decisions and could give reasons for their decisions. They were enthusiastic in formulating policy making based on their knowledge base and have strong held views and reasoning for their choice.

Keywords: informed decision making, socio-scientific issues, nuclear energy use, policy making

Procedia PDF Downloads 290
6631 Career Development for Benjarong Porcelain Handicraft Communities in Central Thailand

Authors: Chutikarn Sriwiboon, Suwaree Yordchim

Abstract:

Benjarong handicraft product is one of the most important handicraft products from Thailand. It involves the management of traditional wisdom of arts and Thai culture. This paper drew upon data collection from local communities by using an in-depth interview technique which was conducted in Thailand during summer of 2014. The survey was structured primarily to obtain local wisdom and concerns toward their career development. This research paper was a qualitative research conducted by focus groups with a total of 51 cooperative women and occupational groups around Thailand which produced the Benjarong products. The data were significantly collected from many sources and many communities, which totaled 24,430 handicraft products, in which the 668 different patterns of Benjarong products were produced by 51 local community network groups in Thailand. The findings revealed that after applying the Philosophy of Sufficiency Economy, there was a significantly positive change in their career development and the process of knowledge management enables local community to enhance their personal development and career.

Keywords: Benjarong, career development, community, handicraft

Procedia PDF Downloads 370
6630 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems

Procedia PDF Downloads 233
6629 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 138
6628 Provenance in Scholarly Publications: Introducing the provCite Ontology

Authors: Maria Joseph Israel, Ahmed Amer

Abstract:

Our work aims to broaden the application of provenance technology beyond its traditional domains of scientific workflow management and database systems by offering a general provenance framework to capture richer and extensible metadata in unstructured textual data sources such as literary texts, commentaries, translations, and digital humanities. Specifically, we demonstrate the feasibility of capturing and representing expressive provenance metadata, including more of the context for citing scholarly works (e.g., the authors’ explicit or inferred intentions at the time of developing his/her research content for publication), while also supporting subsequent augmentation with similar additional metadata (by third parties, be they human or automated). To better capture the nature and types of possible citations, in our proposed provenance scheme metaScribe, we extend standard provenance conceptual models to form our proposed provCite ontology. This provides a conceptual framework which can accurately capture and describe more of the functional and rhetorical properties of a citation than can be achieved with any current models.

Keywords: knowledge representation, provenance architecture, ontology, metadata, bibliographic citation, semantic web annotation

Procedia PDF Downloads 103
6627 Using Social Media to Amplify Social Entrepreneurial Message

Authors: Irfan Khairi

Abstract:

It is arguable that today's social media has dramatically redefined human contact, and chiefly because the platforms enable communication opportunities unprecedented. Without question, billions of individuals globally engage in the media, a reality by no means lost on businesses and social entrepreneurs desirous of generating interest in a cause, movement, or other social effort. If, however, the opportunities are immense, so too is the competition. Private persons and entrepreneurial concerns alike virtually saturate the popular sites of Facebook, Twitter, and Instagram, and most are intent on capturing as much external interest as possible. At the same time, however, the social entrepreneur possesses an advantage over the individual concerned only the social aspects of the sites, as they express interests in, and measures applicable to, important causes of which the public at large may be unaware. There is, unfortunately, no single means of assuring success in using the media outlets to generate interest. Nonetheless, a general awareness of how social media sites function, as well as the psychological elements relevant to the functioning, is necessary. It is as important to comprehend basic realities of the platforms and approaches that fail as it is to develop strategy, for the latter relies on knowledge of the former. This awareness in place, the social entrepreneur is then better enabled to determine strategy, in terms of which sites to focus upon and how to most effectively convey their message. What is required is familiarity with the online communities, with attention to the specific advantages each provides. Ultimately, today's social entrepreneur may establish a highly effective platform of promotion and engagement, provided they fully comprehend the social investment necessary for success.

Keywords: social media, marketing, e-commerce, internet business

Procedia PDF Downloads 193
6626 Evaluation of Access to Finance for Local Oil Fields Companies in Ghana

Authors: Gordon Newlove Asamoah, Wendy Ama Oti

Abstract:

This study focused on evaluating access to finance for local oil field companies in Ghana. The study adopted a census survey design in evaluating access to finance for local oil field companies in Ghana. The respondents of this study were 30 management members of three oil field companies in Ghana. The data collected was analysed using Statistical Package for Social Scientists (SPSS) to generate tables and graphs for interpretation. The results show that most companies use equity financing in combination with other forms of financing to finance their business activities. This research has shown the various challenges bordering on the financing of local oil and gas projects, with emphasis on the challenges of raising funds by indigenous oil companies. Financing of the projects by indigenous oil field companies in Ghana is preferably achieved through equity finance mainly because it is the easiest to get compared to all the other forms of financing available. Other sources of financing available are debt financing, joint venture, and retained earnings from the profits generated from their operations. The study made recommendations to local oil field companies as to how they can make good use of the capital market to raise financing.

Keywords: access, financing, oil fields, Ghana

Procedia PDF Downloads 85
6625 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities

Authors: Mehmet Bulent Topkaya, Mustafa Yildirim

Abstract:

Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.

Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment

Procedia PDF Downloads 284
6624 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 141
6623 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions

Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski

Abstract:

The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.

Keywords: waste heat recovery, heat exchanger, CFD simulation, pems

Procedia PDF Downloads 560
6622 Six Tropical Medicinal Plants Effects in the Treatment of Prostate Diseases in Forty Different Patients

Authors: T. Nalowa, L. Foncha, S. Eposi

Abstract:

Prostate enlargement, prostate cancer are major global health problems affecting many men as they advance in age. It is highly recommended to encourage older men to get Prostate Specific Antigen test screening frequently. Conventional treatments like radiation, chemotherapy are associated with many side effects. And this situation is a call for concern. Traditional medicine is affordable, easily prepared with little or no side effects and it contains many phytochemicals. The study aims to find the cure for prostate cancer and prostate enlargement by extracting products from plant tissues of specific herbs to determine anti-inflammatory, anti-cancer, and anti-hematuria properties. Descriptive statistical analysis was applied to describe the data process. The commonly used method of preparation was extraction. Overall, 40 patients were classified based on their medical conditions on their underlying user report. Rural communities in Fako are rich sources of plants with medicinal properties. The used plants consequently provide basic information and aid to investigate the cure of prostate cancer and prostate enlargement, with great significance.

Keywords: cancer, enlargement, metastases, prostate

Procedia PDF Downloads 55
6621 Supply Chains Resilience within Machine-Made Rug Producers in Iran

Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz

Abstract:

In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.

Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience

Procedia PDF Downloads 142
6620 Optimization of Line Loss Minimization Using Distributed Generation

Authors: S. Sambath, P. Palanivel

Abstract:

Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources.

Keywords: distributed generation, distribution system, load flow analysis, optimal location, power quality

Procedia PDF Downloads 388
6619 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 524
6618 Ecological Art in the Nuclear Anthropocene

Authors: Eve-Andree Laramee

Abstract:

The aesthetics and ethics of the Nuclear Anthropocene are explored through artists responses to the impact of radioactive materials on ecological systems, global issues, energy policies and ourselves. This presentation tracks and reveals the invisible traces of the nuclear weapons complex and the nuclear energy industry, in relation to environmental justice. Radioactive pollution transgresses international borders, boundaries between land and water, contaminating ecological systems. Radioactive waste is never disposed of; it is dispositioned, placed out of sight and out of mind. These materials leave behind an invisible toxic legacy lasting millions of years. As we are learning post-Fukushima, when climate change occurs and vulnerability spectrums shift, nuclear sites and the life forms surrounding them are at increased risk. By visualizing this contamination through art installations, videos, and social-sculpture interventions, information is shared with the public, raising awareness, and activating community participation in remediation and nonproliferation efforts. The emerging Ecological Art genre proposes paradigms sustainable with the life forms and resources of our planet. It is comprised of artists, scientists, philosophers and activists devoted to these. EcoArt is distinguished by a focus on systems and interrelationships within our environment: the ecological, geographic, political, biological and cultural. This presentation will cover artworks addressing the recent Fukushima meltdowns, weapons proliferation, climate change, radioactive waste disposal and environmental justice. Possibilities for art-and-science collaborations will be discussed as projects that sharpen our ethics and politics in our behaviors and social interactions. The presentation will consist of a PowerPoint talk (paper presentation) accompanied by images and video clips.

Keywords: art, ecology, environment, anthropocene, nuclear

Procedia PDF Downloads 217
6617 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing

Abstract:

A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).

Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity

Procedia PDF Downloads 63
6616 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 51
6615 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 102
6614 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model

Authors: Marcin Szlachetka, Konrad Pietrykowski

Abstract:

Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, internal combustion engine, aircraft engine

Procedia PDF Downloads 361
6613 Advancing Women's Participation in SIDS' Renewable Energy Sector: A Multicriteria Evaluation Framework

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 46
6612 A Multicriteria Evaluation Framework for Enhancing Women's Participation in SIDS Renewable Energy Sector

Authors: Carolina Mayen Huerta, Clara Ivanescu, Paloma Marcos

Abstract:

Due to their unique geographic challenges and the imperative to combat climate change, Small Island Developing States (SIDS) are experiencing rapid growth in the renewable energy (RE) sector. However, women's representation in formal employment within this burgeoning field remains significantly lower than their male counterparts. Conventional methodologies often overlook critical geographic data that influence women's job prospects. To address this gap, this paper introduces a Multicriteria Evaluation (MCE) framework designed to identify spatially enabling environments and restrictions affecting women's access to formal employment and business opportunities in the SIDS' RE sector. The proposed MCE framework comprises 24 key factors categorized into four dimensions: Individual, Contextual, Accessibility, and Place Characterization. "Individual factors" encompass personal attributes influencing women's career development, including caregiving responsibilities, exposure to domestic violence, and disparities in education. "Contextual factors" pertain to the legal and policy environment, influencing workplace gender discrimination, financial autonomy, and overall gender empowerment. "Accessibility factors" evaluate women's day-to-day mobility, considering travel patterns, access to public transport, educational facilities, RE job opportunities, healthcare facilities, and financial services. Finally, "Place Characterization factors" enclose attributes of geographical locations or environments. This dimension includes walkability, public transport availability, safety, electricity access, digital inclusion, fragility, conflict, violence, water and sanitation, and climatic factors in specific regions. The analytical framework proposed in this paper incorporates a spatial methodology to visualize regions within countries where conducive environments for women to access RE jobs exist. In areas where these environments are absent, the methodology serves as a decision-making tool to reinforce critical factors, such as transportation, education, and internet access, which currently hinder access to employment opportunities. This approach is designed to equip policymakers and institutions with data-driven insights, enabling them to make evidence-based decisions that consider the geographic dimensions of disparity. These insights, in turn, can help ensure the efficient allocation of resources to achieve gender equity objectives.

Keywords: gender, women, spatial analysis, renewable energy, access

Procedia PDF Downloads 63
6611 Metabolic Engineering of Yarrowia Lipolytica for the Simultaneous Production of Succinic Acid (SA) and Polyhydroxyalkanoates (PHAs)

Authors: Qingsheng Qi, Cuijuan Gao, Carol Sze Ki Lin

Abstract:

Food waste can be defined as a by-product of food processing by industries and consumers, which has not been recycled or used for other purposes. Stringent waste regulations worldwide are pushing local companies and sectors towards higher sustainability standards. The development of novel strategies for food waste re-use is economically and environmentally sound, as it solves a waste management issue and represents an inexpensive nutrient source for biotechnological processes. For example, Yarrowia lipolytica is a yeast which can utilize hydrophobic substrates, such as fatty acids, lipids, and alkanes and simple carbon sources, such as glucose and glycerol, which can all be found in food waste. This broad substrate range makes Y. lipolytica a promising candidate for the degradation and valorisation of food waste, and for the production of organic acids, such as citric and α-ketoglutaric acids. Current research conducted in our group demonstrated that Y. lipolytica was shown to be able to produce succinic acid. In this talk, we will focus on the application of genetically modified yeast Y. lipolytica for fermentative succinic acid production with an aim to increase productivity and yield.

Keywords: food waste, succinic acid, Yarrowia lipolytica, bioplastic

Procedia PDF Downloads 270
6610 Analyzing Semantic Feature Using Multiple Information Sources for Reviews Summarization

Authors: Yu Hung Chiang, Hei Chia Wang

Abstract:

Nowadays, tourism has become a part of life. Before reserving hotels, customers need some information, which the most important source is online reviews, about hotels to help them make decisions. Due to the dramatic growing of online reviews, it is impossible for tourists to read all reviews manually. Therefore, designing an automatic review analysis system, which summarizes reviews, is necessary for them. The main purpose of the system is to understand the opinion of reviews, which may be positive or negative. In other words, the system would analyze whether the customers who visited the hotel like it or not. Using sentiment analysis methods will help the system achieve the purpose. In sentiment analysis methods, the targets of opinion (here they are called the feature) should be recognized to clarify the polarity of the opinion because polarity of the opinion may be ambiguous. Hence, the study proposes an unsupervised method using Part-Of-Speech pattern and multi-lexicons sentiment analysis to summarize all reviews. We expect this method can help customers search what they want information as well as make decisions efficiently.

Keywords: text mining, sentiment analysis, product feature extraction, multi-lexicons

Procedia PDF Downloads 317
6609 Re-Visiting Rumi and Iqbal on Self-Enhancement for Social Responsibility

Authors: Javed Y. Uppal

Abstract:

The background of this study is the great degree of stress that the world is experiencing today, internationally among the countries, within a community among people, and even individually within one’s own self. The significance of the study is the attempt to find a solution of this stress in the philosophy of the olden times of Jalaluddin Rumi and comparatively recently of that of Allama Iqbal. The methodology adopted in this paper is firstly exploration of the perspectives of these philosophers that are being consolidated by a number of psychic and spiritual experts of today, who are being widely read but less followed. This paper further goes on presenting brief life sketches of Rumi and Iqbal. It expounds the key concepts proposed by them and the social change that was resulted in the times of the two above mentioned metaphysical philosophers. It is further amplified that with the recent advancements, in both metaphysics and the physical sciences, the gap between the two is closing down. Both Rumi and Iqbal emphasized their common essence. The old time's concepts, postulates, and philosophies are hence once again becoming valid. The findings of this paper are that the existence of human empathy, affection and mutual social attraction among humans is still valid. The positive inner belief system that dictates our thoughts and actions is vital. As a conclusion, empathy should enable us solving our problems collectively. We need to strengthen our inner communication system, to listen to the messages that come to our inner-selves. We need to get guidance and strength from them. We need to value common needs and purposes collectively to achieve results. Spiritual energy among us is to be harnessed and utilized. Connectivity is to be recognized to unify and strengthen ties among people. Mutual bonding at small and large group levels is to be employed for the survival of the disadvantaged, and sustainability of the empowering trends. With the above guidelines, hopefully, we can define a framework towards a brave and happy new humane world.

Keywords: belief system, connectivity, human empathy, inner-self, mutual bonding, spiritual energy

Procedia PDF Downloads 141