Search results for: waste-derived hydroxy sodalite catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 897

Search results for: waste-derived hydroxy sodalite catalyst

297 Synthesis of Telechelic Polymers for Asphalt Pavements

Authors: Paula C Arroyo, Norma A Sánchez, Mikhail Tlenkopatchev

Abstract:

The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees.

Keywords: asphalt polymers, metathesis polymers, telechelic polymers, modified asphalt

Procedia PDF Downloads 246
296 Synthesis of 3,4-Dihydro-1H-Quinoxalin-2-Ones and 1H‑Quinolin-2-Ones and Evaluation of Their Anti-Bacterial Activity

Authors: Ali Amiri, Arash Esfandiari, Elham Zarenezhad

Abstract:

We report here an efficient and rapid method for the preparation of 3,4-dihydro-1H-quinoxalin-2-ones and 1H‑quinolin-2-ones that involves grinding of o-, m-, or p‑phenylenediamine and three dialkyl acetylenedicarboxylates using a pestle and mortar. This solvent-free approach requires only a few minutes of reaction time. This type of reaction is expected to be the most economical method since neither catalyst nor solvent is used. Finally, all synthesised compounds were screened for antimicrobial activity against two Gram-positive bacteria (Pseudomonas aeruginosa PTCC 1077, Escherichia coli PTCC1330) and two Gram-negative bacteria (Staphylococcus aureus PTCC 1133, Bacillus cereus PTCC 1015) and their activity. Compared with gentamycin and ampicillin as reference drugs for Gram-negative and Gram-positive bacteria, respectively. The minimum inhibitory concentration (MIC) of the synthesised compounds and reference drugs were determined by the microdilution method. Good antibacterial activity was observed for 3,4-dihydro-1H-quinoxalin-2-ones against all species of Gram-positive and Gram-negative bacteria, and1H‑quinolin-2-ones showed good antibacterial activity against two Gram-positive bacteria.

Keywords: quinolin, quinoxalin, anti-bacterial activity, minimum inhibitory concentration (MIC)

Procedia PDF Downloads 315
295 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth

Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong

Abstract:

PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.

Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth

Procedia PDF Downloads 118
294 Optimization of Pyrogallol Based Manganese / Ferroin Catalyzed Nonlinear Chemical Systems and Interaction with Monomeric and Polymeric Entities

Authors: Ghulam Mustafa Peerzada, Shagufta Rashid, Nadeem Bashir

Abstract:

These the influence of initial reagent concentrations on the Belousov-Zhabotinsky (BZ) system with Mn2+/Mn3+ as redox catalyst, inorganic bromate as oxidant and pyrogallol as organic substrate was studied. The reactions were monitored by potentiometery in oxidation reduction potential (ORP) mode. The aforesaid reagents were mixed with varying concentrations to evolve the optimal concentrations at which the reaction system exhibited better oscillations. The various oscillatory parameters such as induction period (tin), time period (tp), frequency (v), amplitude (A) and number of oscillations (n) were derived and the dependence of concentration of the reacting species on these oscillatory parameters was interpreted on the basis of the Field-Koros-Noyes mechanism. Ferroin based BZ system with pyrogallol as organic substrate was optimized under CSTR condition at temperature of 30±0.1oC Effect of molecules like monomer and polymer as additives to the system was checked and their interaction with the system was also studied. It has been observed that the monomer affects the time period, while the polymer has its effect on the amplitude of oscillations because of monomer’s interaction with the bromine and polymer’s with that of the Ferroin.

Keywords: Belousov Zhabotinsky reaction, oscillatory parameters, polymer, pyrogallol

Procedia PDF Downloads 288
293 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 236
292 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 200-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence were obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption

Procedia PDF Downloads 464
291 Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel

Authors: Mohamed Hassan Gundu, Jaeseung Lee, Muhammad Faizan Chinannai, Hyunchul Ju

Abstract:

In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width).

Keywords: PEMFC, air-cooling, relative humidity, water management, water concentration, oxygen concentration

Procedia PDF Downloads 273
290 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 161
289 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts

Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin

Abstract:

Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.

Keywords: methane combustion, palladium, Co-Ce, Ni-Ce

Procedia PDF Downloads 161
288 Fast Reductive Defluorination of Branched Perfluorooctane Sulfonic Acids by Cobalt Phthalocyanine: Electrochemical Studies and Mechanistic Insights

Authors: Maryam Mirabediny, Tsz Tin Yu, Jun Sun, Matthew Lee, Denis M. O’Carroll, Michael J. Manefield, Björn Akermark, Biswanath Das, Naresh Kumar

Abstract:

Branched perfluorooctane sulfonic acid (PFOS) is recognized as a threatening environmental pollutant due to its high persistence and bioaccumulation in various environmental matrices as well as for its toxic effects on humans and wildlife, even at very low concentrations. This study reports the first investigation of branched PFOS defluorination catalyzed by metal phthalocyanines. The reaction conditions were optimized using the different reductants and temperatures. Cobalt phthalocyanine, when combined with Ti citrate as a reducing agent, was able to defluorinate 10.9% of technical PFOS within 8 hours. In contrast, vitamin B12 only showed 2.4% defluorination during the same period under similar conditions. The defluorination mediated by cobalt phthalocyanine and Ti citrate system corresponds to 54.5% of all branched PFOS isomers (br-PFOS isomers). Isomer-specific degradation was also investigated via high-resolution LC-orbitrap, followed by their relative rates. The difference in catalytic efficacy of various phthalocyanine complexes is rationalized by their structures and electrochemical response. Lastly, a new defluorination mechanism is proposed based on the newly detected degradation products after the phthalocyanines treatment and the previous studies.

Keywords: branched isomers, catalyst, reductive defluorination, water remediation

Procedia PDF Downloads 76
287 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment

Authors: Beena Sethi

Abstract:

This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.

Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis

Procedia PDF Downloads 399
286 Control of Pipeline Gas Quality to Extend Gas Turbine Life

Authors: Peter J. H. Carnell, Panayiotis Theophanous

Abstract:

Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.

Keywords: gas composition, gas conditioning, gas turbines, power generation, purification

Procedia PDF Downloads 263
285 Anti-Neuroinflammatory and Anti-Apoptotic Efficacy of Equol, against Lipopolysaccharide Activated Microglia and Its Neurotoxicity

Authors: Lalita Subedi, Jae Kyoung Chae, Yong Un Park, Cho Kyo Hee, Lee Jae Hyuk, Kang Min Cheol, Sun Yeou Kim

Abstract:

Neuroinflammation may mediate the relationship between low levels of estrogens and neurodegenerative disease. Estrogens are neuroprotective and anti-inflammatory in neurodegenerative disease models. Due to the long term side effects of estrogens, researches have been focused on finding an effective phytoestrogens for biological activities. Daidzein present in soybeans and its active metabolite equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman) bears strong antioxidant and anticancer showed more potent anti-inflammatory and neuroprotective role in neuroinflammatory model confirmed its in vitro activity with molecular mechanism through NF-κB pathway. Three major CNS cells Microglia (BV-2), Astrocyte (C6), Neuron (N2a) were used to find the effect of equol in inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), MAPKs signaling proteins, apoptosis related proteins by western blot analysis. Nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by the Gries method and ELISA, respectively. Cytokines like tumor necrosis factor-α (TNF-α) and IL-6 were also measured in the conditioned medium of LPS activated cells with or without equol. Equol inhibited the NO production, PGE-2 production and expression of COX-2 and iNOS in LPS-stimulated microglial cells at a dose dependent without any cellular toxicity. At the same time Equol also showed promising effect in modulation of MAPK’s and nuclear factor kappa B (NF-κB) expression with significant inhibition of the production of proinflammatory cytokine like interleukin -6 (IL-6), and tumor necrosis factor -α (TNF-α). Additionally, it inhibited the LPS activated microglia-induced neuronal cell death by downregulating the apoptotic phenomenon in neuronal cells. Furthermore, equol increases the production of neurotrophins like NGF and increase the neurite outgrowth as well. In conclusion the natural daidzein metabolite equol are more active than daidzein, which showed a promising effectiveness as an anti-neuroinflammatory and neuroprotective agent via downregulating the LPS stimulated microglial activation and neuronal apoptosis. This work was supported by Brain Korea 21 Plus project and High Value-added Food Technology Development Program 114006-4, Ministry of Agriculture, Food and Rural Affairs.

Keywords: apoptosis, equol, neuroinflammation, phytoestrogen

Procedia PDF Downloads 343
284 Cultural Event and Urban Regeneration: Lessons from Liverpool as the 2008 European Capital of Culture

Authors: Yi-De Liu

Abstract:

For many European cities, a key motivation in developing event strategies is to use event as a catalyst for urban regeneration. One type of event that is particularly used as a means of urban development is the European Capital of Culture (ECOC) initiative. Based on a case study of the 2008 ECOC Liverpool, this paper aims at conceptualising the significance of major event for a city’s economic, cultural and social regenerations. In terms of economic regeneration, the role of the ECOC is central in creating Liverpool’s visitor economy and reshaping city image. Liverpool planned different themes for eight consecutive years as a way to ensure economic sustainability. As far as cultural regeneration is concerned, the ECOC contributed to the cultural regeneration of Liverpool by stimulating cultural participation and interest from the demand side, as well as improving cultural provision and collaboration within the cultural sector from the supply side. So as to social regeneration, Liverpool treated access development as a policy guideline and considered the ECOC as an opportunity to enhance the sense of place. The most significant lesson learned from Liverpool is its long-term planning and efforts made to integrate the ECOC into the overall urban development strategy. As a result, a more balanced and long-term effect on urban regeneration could be achieved.

Keywords: cultural event, urban regeneration, european capital of culture, Liverpool

Procedia PDF Downloads 243
283 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation

Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu

Abstract:

Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.

Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction

Procedia PDF Downloads 77
282 Application of Intelligent City and Hierarchy Intelligent Buildings in Kuala Lumpur

Authors: Jalalludin Abdul Malek, Zurinah Tahir

Abstract:

When the Multimedia Super Corridor (MSC) was launched in 1995, it became the catalyst for the implementation of the intelligent city concept, an area that covers about 15 x 50 kilometres from Kuala Lumpur City Centre (KLCC), Putrajaya and Kuala Lumpur International Airport (KLIA). The concept of intelligent city means that the city has an advanced infrastructure and infostructure such as information technology, advanced telecommunication systems, electronic technology and mechanical technology to be utilized for the development of urban elements such as industries, health, services, transportation and communications. For example, the Golden Triangle of Kuala Lumpur has also many intelligent buildings developed by the private sector such as the KLCC Tower to implement the intelligent city concept. Consequently, the intelligent buildings in the Golden Triangle can be linked directly to the Putrajaya Intelligent City and Cyberjaya Intelligent City within the confines of the MSC. However, the reality of the situation is that there are not many intelligent buildings within the Golden Triangle Kuala Lumpur scope which can be considered of high-standard intelligent buildings as referred to by the Intelligence Quotient (IQ) building standard. This increases the need to implement the real ‘intelligent city’ concept. This paper aims to show the strengths and weaknesses of the intelligent buildings in the Golden Triangle by taking into account aspects of 'intelligence' in the areas of technology and infrastructure of buildings.

Keywords: intelligent city concepts, intelligent building, Golden Triangle, Kuala Lumpur

Procedia PDF Downloads 265
281 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway

Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani

Abstract:

Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.

Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase

Procedia PDF Downloads 346
280 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions

Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes

Abstract:

Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.

Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture

Procedia PDF Downloads 255
279 Evaluation of Vitamin D Levels in Obese and Morbid Obese Children

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity may lead to growing serious health problems throughout the world. Vitamin D appears to play a role in cardiovascular and metabolic health. Vitamin D deficiency may add to derangements in human metabolic systems, particularly those of children. Childhood obesity is associated with an increased risk of chronic and sophisticated diseases. The aim of this study is to investigate associations as well as possible differences related to parameters affected by obesity and their relations with vitamin D status in obese (OB) and morbid obese (MO) children. This study included a total of 78 children. Of them, 41 and 37 were OB and MO, respectively. WHO BMI-for age percentiles were used for the classification of obesity. The values above 99 percentile were defined as MO. Those between 95 and 99 percentiles were included into OB group. Anthropometric measurements were recorded. Basal metabolic rates (BMRs) were measured. Vitamin D status is determined by the measurement of 25-hydroxy cholecalciferol [25- hydroxyvitamin D3, 25(OH)D] using high-performance liquid chromatography. Vitamin D status was evaluated as deficient, insufficient and sufficient. Values < 20.0 ng/ml, values between 20-30 ng/ml and values > 30.0 ng/ml were defined as vitamin D deficient, insufficient and sufficient, respectively. Optimal 25(OH)D level was defined as ≥ 30 ng/ml. SPSSx statistical package program was used for the evaluation of the data. The statistical significance degree was accepted as p < 0.05. Mean ages did not differ between the groups. Significantly increased body mass index (BMI), waist circumference (C) and neck C as well as significantly decreased fasting blood glucose (FBG) and vitamin D values were observed in MO group (p < 0.05). In OB group, 37.5% of the children were vitamin D deficient, and in MO group the corresponding value was 53.6%. No difference between the groups in terms of lipid profile, systolic blood pressure (SBP), diastolic blood pressure (DBP) and insulin values was noted. There was a severe statistical significance between FBG values of the groups (p < 0.001). Important correlations between BMI, waist C, hip C, neck C and both SBP as well as DBP were found in OB group. In MO group, correlations only with SBP were obtained. In a similar manner, in OB group, correlations were detected between SBP-BMR and DBP-BMR. However, in MO children, BMR correlated only with SBP. The associations of vitamin D with anthropometric indices as well as some lipid parameters were defined. In OB group BMI, waist C, hip C and triglycerides (TRG) were negatively correlated with vitamin D concentrations whereas none of them were detected in MO group. Vitamin D deficiency may contribute to the complications associated with childhood obesity. Loss of correlations between obesity indices-DBP, vitamin D-TRG, as well as relatively lower FBG values, observed in MO group point out that the emergence of MetS components starts during obesity state just before the transition to morbid obesity. Aside from its deficiency state, associations of vitamin D with anthropometric measurements, blood pressures and TRG should also be evaluated before the development of morbid obesity.

Keywords: children, morbid obesity, obesity, vitamin D

Procedia PDF Downloads 120
278 A Sensitive Uric Acid Electrochemical Sensing in Biofluids Based on Ni/Zn Hydroxide Nanocatalyst

Authors: Nathalia Florencia Barros Azeredo, Josué Martins Gonçalves, Pamela De Oliveira Rossini, Koiti Araki, Lucio Angnes

Abstract:

This work demonstrates the electroanalysis of uric acid (UA) at very low working potential (0 V vs Ag/AgCl) directly in body fluids such as saliva and sweat using electrodes modified with mixed -Ni0.75Zn0.25(OH)2 nanoparticles exhibiting stable electrocatalytic responses from alkaline down to weakly acidic media (pH 14 to 3 range). These materials were prepared for the first time and fully characterized by TEM, XRD, and spectroscopic techniques. The electrochemical properties of the modified electrodes were evaluated in a fast and simple procedure for uric acid analyses based on cyclic voltammetry and chronoamperometry, pushing down the detection and quantification limits (respectively of 2.3*10-8 and 7.6*10-8 mol L-1) with good repeatability (RSD = 3.2% for 30 successive analyses pH 14). Finally, the possibility of real application was demonstrated upon realization of unexpectedly robust and sensitive modified FTO (fluorine doped tin oxide) glass and screen-printed sensors for measurement of uric acid directly in real saliva and sweat samples, with no significant interference of usual concentrations of ascorbic acid, acetaminophen, lactate and glucose present in those body fluids (Fig. 1).

Keywords: nickel hydroxide, mixed catalyst, uric acid sensors, biofluids

Procedia PDF Downloads 107
277 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide

Procedia PDF Downloads 287
276 Unmasking Theatrical Language: Exploring Ideological Connections in American Theater

Authors: Gizem Barreto Martins

Abstract:

This paper explores the subversive potential inherent in the theatrical language employed within Arthur Miller's The Crucible. The research argues that this play intricately weaves ideological connections with its audience and the historical epoch it represents, effectively serving as a channel for ideological and cultural interaction potentially exerting subversive influences on social and political realms. Using a historical-materialist methodology that situates the play within its historical and political context, all while examining its connections with theater and literary theories, the paper raises a fundamental query: How does this dramatic work embody subversion, presenting a style unburdened by the performative conventions of daily life and prevailing codes and systems of representation? In response to this inquiry, the study asserts that theatrical language has the capacity to function as a subversive catalyst against prevailing ideologies, actively contributing to the process of social transformation. To substantiate this claim, the research conducts a detailed analysis of the selected play, employing the semiotic framework pioneered by Gilles Deleuze and Felix Guattari.

Keywords: arthur miller, The crucible, gilles deleuze, felix guattari, theater and literary theories

Procedia PDF Downloads 39
275 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection

Authors: Vinci Mojamdar, Govind S. Gupta

Abstract:

Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.

Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed

Procedia PDF Downloads 282
274 Biobased Polyurethane Derived from Transesterified Castor Oil: Synthesis and Charecterization

Authors: Sonalee Das, Smita Mohanty, S. K. Nayak

Abstract:

Recent years has witnessed the increasing demand for natural resources and products in polyurethane synthesis because of global warming, sustainable development and oil crisis. For this purpose, different plant oils such as soybean oil, castor oil and linseed oil are extensively used. Moreover, the isocyanate used for the synthesis of polyurethane is derived from petroleum resources. In this present work attempts have been made for the successful synthesis of biobased isocyanate from castor oil with partially biobased isocyanate in presence of catalyst dibutyltin dilaurate (DBTDL). The goal of the present study was to investigate the thermal, mechanical, morphological and chemical properties of the synthesized polyurethane in terms of castor oil modification. The transesterified polyol shows broad and higher hydroxyl value as compared to castor oil which was confirmed by FTIR studies. The FTIR studies also revealed the successful synthesis of bio based polyurethane by showing characteristic peaks at 3300cm-1, 1715cm-1 and 1532cm-1 respectively. The TGA results showed three step degradation mechanism for the synthesized polyurethane from modified and unmodified castor oil. However, the modified polyurethane exhibited higher degradation temperature as compared to unmodified one. The mechanical properties also demonstrated higher tensile strength for modified polyurethane as compared to unmodified one.

Keywords: castor oil, partially biobased Isocyanate, polyurethane synthesis, FTIR

Procedia PDF Downloads 326
273 The Secret Ingredient of Student Involvement: Applied Science Case Studies to Enhance Sustainability

Authors: Elizelle Juanee Cilliers

Abstract:

Recent planning thinking has laid the foundations for a general sense of best practice that aims to enhance the quality of life, suggesting an open and participatory process. It is accepted that integration of top-down and bottom-up approaches may lead to efficient action in environments and sustainable planning and development, although it is also accepted that such an integrated approach has various challenges of implementation. A flexible framework in which the strengths of both the top-down and bottom-up approaches were explored in this research, based on the EU Interreg VALUE Added project and five case studies where student education and student involvement played a crucial role within the participation process of the redesign of the urban environment. It was found that international student workshops were an effective tool to integrate bottom-up and top-down structures, as it acted as catalyst for communication, interaction, creative design, quick transformation from planning to implementation, building social cohesion, finding mutual ground between stakeholders and thus enhancing overall quality of life and quality of environments. It offered a good alternative to traditional participation modes and created a platform for an integrative planning approach. The role and importance of education and integration within the urban environment were emphasized.

Keywords: top-down, bottom-up, flexible, student involvement

Procedia PDF Downloads 190
272 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 250
271 Prevalence of Hinglish on the Indian English News Channels and Its Impact on the New Language Learners: A Qualitative Analysis

Authors: Swatantra

Abstract:

Hinglish, a blended version of Hindi and English, emerged due to the lack of the competence and command of the speakers over the foreign language, i., e., English. But, amazingly, the trend has gained wide acceptance. In India, this acceptance has gone up to the extent that popular news anchors at the prime time shows are frequently using it. At the moment, instead of being considered a flaw of their presentation Hinglish is emerging as a trendy genre. Its pervasive usage and extensive acceptance is motivating youngsters to opt for the similar kind of patterns. The current study is an endeavour to assess the impact of this trend on the new language learners. With the help of semi-structured interviews, the researcher has tried to gauge the level of comfort and desire to be at par with the other fluent English speakers. The results clearly depict a substantiated boost in the confidence level of learners because they are able to use the vocabulary and sentence patterns of their own choice and convenience. The prevalence and acceptance of the trend in the main stream media have really served as a catalyst and the desire to be at par with the other fluent speakers is also fading away. The users of Hinglish find this trend to be closer to their heart as in the earlier times in the absence of exact translation they had to compromise with the meaning or spirit of the word/phrase / sentence. But now enhanced flexibility is leaving them more comfortable and confident.

Keywords: Hinglish, language learners, linguistic trends, media

Procedia PDF Downloads 128
270 Catalytic Deoxygenation of Non-Edible Oil to Renewable Fuel by Using Calcium-Based Nanocatalyst

Authors: Hwei Voon Lee, N. Asikin-Mijana, Y. H. Taufiq-Yap, J. C. Juan, N. A. Rahman

Abstract:

Cracking–Deoxygenation process is one of the important reaction pathways for the production of bio-fuel with desirable n-C17 hydrocarbon chain via removal of oxygen compounds. Calcium-based catalyst has attracted much attention in deoxygenation process due to its relatively high capacity in removing oxygenated compounds in the form of CO₂ and CO under decarboxylation and decarbonylation reaction, respectively. In the present study, deoxygenation of triolein was investigated using Ca(OH)₂ nanocatalyst derived from low cost natural waste shells. The Ca(OH)₂ nanocatalyst was prepared via integration techniques between surfactant treatment (anionic and non-ionic) and wet sonochemical effect. Results showed that sonochemically assisted surfactant treatment has successfully enhanced the physicochemical properties of Ca(OH)₂ nanocatalyst in terms of nanoparticle sizes (∼50 nm), high surface area(∼130 m²g⁻¹), large porosity (∼18.6 nm) and strong basic strength. The presence of superior properties from surfactant treated Ca(OH)₂ nanocatalysts rendered high deoxygenation degree, which is capable of producing high alkane and alkene selectivity in chain length of n-C17(high value of C17/(n-C17+ n-C18)ratio = 0.88). Furthermore, both Ca(OH)₂–EG and Ca(OH)₂–CTAB nanocatalysts showed high reactivity with 47.37% and 44.50%, respectively in total liquid hydrocarbon content of triolein conversion with high H/C and low O/C ratio.

Keywords: clamshell, cracking, decarboxylation-decarbonylation, hydrocarbon

Procedia PDF Downloads 163
269 C₅₉Pd: A Heterogeneous Catalytic Material for Heck Coupling Reaction

Authors: Manjusha C. Padole, Parag A. Deshpande

Abstract:

Density functional theory calculations were carried out for identification of an active heterogeneous catalyst to carry out Heck coupling reaction which is of pharmaceutical importance. One of the carbonaceous nanomaterials, heterofullerene, was designed for the reaction. Stability and reactivity of the proposed heterofullerenes (C59M, M = Pd/Ni) were established with insights into the metal-carbon bond, electron affinity and chemical potential. Adsorbent potentials of both the heterofullerenes were examined from the adsorption study of four halobenzenes (C6H5F, C6H5Cl, C6H5Br and C6H5I). Oxidative addition activities of all four halobenzenes were investigated by developing free energy landscapes over both the heterofullerenes for rate determining step (oxidative addition). C6H5I showed a good catalytic activity for the rate determining step. Thus, C6H5I was proposed as a suitable halobenzene and complete free energy landscapes for Heck coupling reaction were developed over C59Pd and C59Ni. Smaller activation barriers observed over C59Pd in comparison with C59Ni put us in a position to propose C59Pd to be an efficient heterofullerene for carrying Heck coupling reaction.

Keywords: metal-substituted fullerene, density functional theory, electron affinity, oxidative addition, Heck coupling reaction

Procedia PDF Downloads 197
268 Electrochemical Studies of Nickel Nanoparticles Decorated the Surface of Some Conducting Polymers for Glucose Oxidation in Biofuel Cells

Authors: Z. Khalifa, K. M. Hassan, M. Abdel Azzem

Abstract:

Potential strategies for deriving useful forms of renewable high density energy from abundant energy stored in carbohydrates is direct conversion of glucose (GLU) to electrical power. A three novel versatile modified electrodes, synthesized by electrochemical polymerization of organic monomers on glassy carbon electrodes (GC), have been developed for biofuel cells results in stable and long-term power production. Electrocatalytic oxidation of glucose in alkaline solution on conducting polymers electrodes modified by incorporation of Ni nanoparticles (NiNPs) onto poly(1,5-aminonaphthalene) (1,5-PDAN), poly(1,8-diaminonaphthalene) (1,8-PDAN) and poly(1-amino-2-methyl-9,10-anthraquinone) (PAMAQ) was investigated. The electrocatalytic oxidation of glucose at NiNPs-modified 1,5-PDAN/GC, 1,8-PDAN/GC and PAMAQ/GC electrodes has been studied using voltammetry technique. The PDAN electrodes show a slight activity in the potential of interest. The prepared NiNPs/PAMAQ/GC catalyst showed a very interesting catalytic activity that was nicely comparable to the NiNPs/1,5-PDAN/GC, NiNPs/1,8-PDAN/GC modified electrodes. In advance, both shows a significant more catalytic activity compared to the reported data for electrodes for glucose electrocatalytic oxidation.

Keywords: biofuel cells, glucose oxidation, electrocatalysis, nanoparticles and modified electrodes

Procedia PDF Downloads 218