Search results for: waste feedstock
2269 Re-Use of Waste Marble in Producing Green Concrete
Authors: Hasan Şahan Arel
Abstract:
In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.Keywords: cement production, concrete, CO2 emission, marble, mechanical properties
Procedia PDF Downloads 3162268 Exploring the Factors Affecting the Dependability of Mobile Devices in the Current World
Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono
Abstract:
In recent times the level of advancement in electronics and manufacturing technologies for portable electronic devices, especially for mobile devices such as cell phones, smartphones, personal digital assistants and tablet computers is unprecedented. Mobile devices have become indispensable to individuals, and businesses all over the world. The high level of manufacturing and production of mobile devices has led to the rapid release of newer and sleeker models with new features and capabilities. However, these newer models therefore render older models obsolete, and this pushes people to frequently replace their devices. The drawback of such frequent replacements is that a large number of devices are disposed and they end up as e-waste. The fact that e-waste constitutes a major hazard to human health and to the environment is the motivation behind this study whose aim is to develop a model of possible factors that affects the dependability of mobile devices which in turn leads to the obsolescence of these devices.Keywords: dependability, mobile devices, obsolescence, e-waste
Procedia PDF Downloads 3142267 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia
Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim
Abstract:
The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material
Procedia PDF Downloads 542266 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 332265 Working Towards More Sustainable Food Waste: A Circularity Perspective
Authors: Rocío González-Sánchez, Sara Alonso-Muñoz
Abstract:
Food waste implies an inefficient management of the final stages in the food supply chain. Referring to Sustainable Development Goals (SDGs) by United Nations, the SDG 12.3 proposes to halve per capita food waste at the retail and consumer level and to reduce food losses. In the linear system, food waste is disposed and, to a lesser extent, recovery or reused after consumption. With the negative effect on stocks, the current food consumption system is based on ‘produce, take and dispose’ which put huge pressure on raw materials and energy resources. Therefore, greater focus on the circular management of food waste will mitigate the environmental, economic, and social impact, following a Triple Bottom Line (TBL) approach and consequently the SDGs fulfilment. A mixed methodology is used. A total sample of 311 publications from Web of Science database were retrieved. Firstly, it is performed a bibliometric analysis by SciMat and VOSviewer software to visualise scientific maps about co-occurrence analysis of keywords and co-citation analysis of journals. This allows for the understanding of the knowledge structure about this field, and to detect research issues. Secondly, a systematic literature review is conducted regarding the most influential articles in years 2020 and 2021, coinciding with the most representative period under study. Thirdly, to support the development of this field it is proposed an agenda according to the research gaps identified about circular economy and food waste management. Results reveal that the main topics are related to waste valorisation, the application of waste-to-energy circular model and the anaerobic digestion process towards fossil fuels replacement. It is underlined that the use of food as a source of clean energy is receiving greater attention in the literature. There is a lack of studies about stakeholders’ awareness and training. In addition, available data would facilitate the implementation of circular principles for food waste recovery, management, and valorisation. The research agenda suggests that circularity networks with suppliers and customers need to be deepened. Technological tools for the implementation of sustainable business models, and greater emphasis on social aspects through educational campaigns are also required. This paper contributes on the application of circularity to food waste management by abandoning inefficient linear models. Shedding light about trending topics in the field guiding to scholars for future research opportunities.Keywords: bibliometric analysis, circular economy, food waste management, future research lines
Procedia PDF Downloads 1122264 Production of Friendly Environmental Material as Building Element from Plastic Waste
Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel
Abstract:
The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.Keywords: LWAC, plastic waste, thermal property, thermal insulation
Procedia PDF Downloads 4282263 Challenges in Adopting 3R Concept in the Heritage Building Restoration
Authors: H. H. Goh, K. C. Goh, T. W. Seow, N. S. Said, S. E. P. Ang
Abstract:
Malaysia is rich with historic buildings, particularly in Penang and Malacca states. Restoration activities are increasingly important as these states are recognized under UNESCO World Heritage Sites. Restoration activities help to maintain the uniqueness and value of a heritage building. However, increasing in restoration activities has resulted in large quantities of waste. To cope with this problem, the 3R concept (reduce, reuse and recycle) is introduced. The 3R concept is one of the waste management hierarchies. This concept is still yet to apply in the building restoration industry compared to the construction industry. Therefore, this study aims to promote the 3R concept in the heritage building restoration industry. This study aims to examine the importance of 3R concept and to identify challenges in applying the 3R concept in the heritage building restoration industry. This study focused on contractors and consultants who are involved in heritage restoration projects in Penang. Literature review and interviews helps to reach the research objective. Data that obtained is analyzed by using content analysis. For the research, application of 3R concept is important to conserve natural resources and reduce pollution problems. However, limited space to organise waste is the obstruction during the implementation of this concept. In conclusion, the 3R concept plays an important role in promoting environmental conservation and helping in reducing the construction wasteKeywords: 3R Concept, heritage building, restoration activities, building science
Procedia PDF Downloads 3132262 Invisible to Invaluable - How Social Media is Helping Tackle Stigma and Discrimination Against Informal Waste Pickers of Bengaluru
Authors: Varinder Kaur Gambhir, Neema Gupta, Sonal Tickoo Chaudhuri
Abstract:
Bengaluru, a rapidly growing metropolis in India, with a population of 12.5 million citizens, generates 5,757 metric tonnes of solid waste per day. Despite their invaluable contribution to waste management, society and the economy, waste pickers face significant stigma, suspicion and contempt and are left with a sense of shame about their work. In this context, BBC Media Action was funded by the H&M Foundation to develop a 3-year multi-phase social media campaign to shift perceptions of waste picking and informal waste pickers amongst the Bengaluru population. Research has been used to inform project strategy and adaptation, at all stages. Formative research to inform campaign strategy used mixed methods– 14 focused group discussions followed by 406 online surveys – to explore people’s knowledge of, and attitudes towards waste pickers, and identify potential barriers and motivators to changing perceptions. Use of qualitative techniques like metaphor maps (using bank of pictures rather than direct questions to understand mindsets) helped establish the invisibility of informal waste pickers, and the quantitative research enabled audience segmentation based on attitudes towards informal waste pickers. To pretest the campaign idea, eight I-GDs (individual interaction followed by group discussions) were conducted to allow interviewees to first freely express their feelings individually, before discussing in a group. Robert Plucthik’s ‘wheel of emotions’ was used to understand audience’s emotional response to the content. A robust monitoring and evaluation is being conducted (baseline and first phase of monitoring already completed) using a rotating longitudinal panel of 1,800 social media users (exposed and unexposed to the campaign), recruited face to face and representative of the social media universe of Bengaluru city. In addition, qualitative in-depth interviews are being conducted after each phase to better understand change drivers. The research methodology and ethical protocols for impact evaluation have been independently reviewed by an Institutional Review Board. Formative research revealed that while waste on the streets is visible and is of concern to the public, informal waste pickers are virtually ‘invisible’, for most people in Bengaluru Pretesting research revealed that the creative outputs evoked emotions like acceptance and gratitude towards waste-pickers, suggesting that the content had the potential to encourage attitudinal change. After the first phase of campaign, social media analytics show that #Invaluables content reached at least 2.6 million unique people (21% of the Bengaluru population) through Facebook and Instagram. Further, impact monitoring results show significant improvements in spontaneous awareness of different segments of informal waste pickers ( such as sorters at scrap shops or dry waste collection centres -from 10% at baseline to 16% amongst exposed and no change amongst unexposed), recognition that informal waste pickers help the environment (71% at baseline to 77% among exposed and no change among unexposed) and greater discussion about informal waste pickers among those exposed (60%) as against not exposed (49%). Using the insights from this research, the planned social media intervention is designed to increase the visibility of and appreciation for the work of waste pickers in Bengaluru, supporting a more inclusive society.Keywords: awareness, discussion, discrimination, informal waste pickers, invisibility, social media campaign, waste management
Procedia PDF Downloads 1072261 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer
Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna
Abstract:
The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer.Keywords: adsorption efficiency, clayey pellet, metal ions, waste printing developer
Procedia PDF Downloads 3012260 Municipal Sewage Sludge as Co-Substrate in Anaerobic Digestion of Vegetable Waste and Biogas Yield
Authors: J. V. Thanikal, M. Torrijos, Philipe Sousbie, S. M. Rizwan, R. Senthil Kumar, Hatem Yezdi
Abstract:
Co-digestion is one of the advantages of anaerobic digestion process because; several wastes having complimentary characteristics can be treated in a single process. The anaerobic co-digestion process, which can be defined as the simultaneous treatment of two –or more – organic biodegradable waste streams by anaerobic digestion offers great potential for the proper disposal of the organic fraction of solid waste coming from source or separate collection systems. The results of biogas production for sewage sludge, when used as a single substrate, were low (350ml/d), and also the biodegradation rate was slow. Sewage sludge as a co-substrate did not show much effect on biogas yield. The vegetable substrates (Potato, Carrot, Spinach) with a total charge of 27–36 g VS, with a HRT starting from 3 days and ending with 1 day, shown a considerable increase in biogas yield 3.5-5 l/d.Keywords: anaerobic digestion, co-digestion, vegetable substrate, sewage sludge
Procedia PDF Downloads 5712259 Cat Stool as an Additive Aggregate to Garden Bricks
Authors: Mary Joy B. Amoguis, Alonah Jane D. Labtic, Hyna Wary Namoca, Aira Jane V. Original
Abstract:
Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks.Keywords: cat stool, garden bricks, cement, concentrations, animal wastes, compressive strength, durability, one-way ANOVA, additive, incineration, aggregates, stray cats
Procedia PDF Downloads 642258 Estimation of Leachate Generation from Municipal Solid Waste Landfills in Selangor
Authors: Tengku Nilam Baizura, Noor Zalina Mahmood
Abstract:
In Malaysia, landfilling is the most preferred method and most of it does not have the proper leachate treatment system which can cause environmental problems. Leachate is the major factor to river water pollution since most landfills are located near the river which is the main water resource for the country. The study aimed to estimate leachate production from landfills in Selangor. A simple mathematical modelling was used for the calculation of annual leachate volume. The estimate of identified landfill area (A) using Google Earth was multiplied by the annual rainfall (R). The product is expressed as volume (V). The data indicate that the leachate production is high even it is fully closed. It is important to design the efficient landfill and proper leachate treatment processes especially for the old/closed landfill. Extensive monitoring will be required to predict future impact.Keywords: landfill, leachate, municipal solid waste management, waste disposal
Procedia PDF Downloads 3702257 Highly Skilled Migrants Trapped in the Brain Waste: The Eastern European Graduates in the Western European Underemployment
Authors: Katalin Bándy
Abstract:
The European emigration of highly educated immigrants draws attention to the problem of brain drain. Due to the Eastern European countries joining the EU and the opening of the Western European labour market the west-wards migration brisked up. By now another problem has been intensified correlated to migration: the migration of highly skilled workers related to brain waste tendencies. With some exceptions, educated immigrants from Eastern European countries are more likely to end up in unskilled jobs than residents. This paper is about to reveal the above-mentioned problems and this study is supported by the results of secondary pieces of research and the own survey made in the EU-15 among the Hungarian highly skilled (especially economics graduated) migrants, and it also examines the causes and in the focus there are the migrant motivations of the high-skilled young generation after the crisis.Keywords: brain drain, brain waste, migration of highly-skilled, underemployment
Procedia PDF Downloads 3412256 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks
Authors: Andrew C. Eloka Eboka, Freddie L. Inambao
Abstract:
Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond
Procedia PDF Downloads 3632255 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process
Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun
Abstract:
This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventionalKeywords: manure composting, odor removal, parameter control, waste recycling
Procedia PDF Downloads 3102254 Physico-Chemical Parameters and Economic Evaluation of Bio-Ethanol Produced from Waste of Starting Dates in South Algeria
Authors: Insaf Mehani, Bachir Bouchekima
Abstract:
The fight against climate change and the replacement of fossil energies nearing exhaustion gradually emerge as major societal and economic challenges. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.Keywords: bio-energy, waste dates, bio ethanol, Algeria
Procedia PDF Downloads 3652253 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex
Authors: Ashish Agarwal, Vaibhav Singh
Abstract:
Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas
Procedia PDF Downloads 2262252 Application of Lean Manufacturing in Brake Shoe Manufacturing Plant: A Case Study
Authors: Anees K. Ahamed, Aakash Kumar R. G., Raj M. Mohan
Abstract:
The main objective is to apply lean tools to identify and eliminate waste in and among the work stations so as to improve the process speed and quality. From the top seven wastes in the lean concept, we consider the movement of materials, defects, and inventory for the improvement since these cause the major impact on the performance measures. The layout was improved to reduce the movement of materials. It also quantifies the reduction in movement among the work stations. Value stream mapping has been used for identification of waste. Cause and effect diagram and 5W analysis are used to identify the reasons for defects and to provide the counter measures. Some cycle time reduction techniques also proposed to improve the productivity. Lean Audit check sheet was also used to identify the current position of the industry and to identify the gap to make the industry Lean.Keywords: cause and effect diagram, cycle time reduction, defects, lean, waste reduction
Procedia PDF Downloads 3852251 Bio-Hub Ecosystems: Investment Risk Analysis Using Monte Carlo Techno-Economic Analysis
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, new methodologies to analyze investment risk are needed. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. This study modeled the economics and risk strategies of cradle-to-cradle linkages to incorporate the value-chain effects on capital/operational expenditures and investment risk reductions using a proprietary techno-economic model that incorporates investment risk scenarios utilizing the Monte Carlo methodology. The study calculated the sequential increases in profitability for each additional co-host on an operating forestry-based biomass energy plant in West Enfield, Maine. Phase I starts with the base-line of forestry biomass to electricity only and was built up in stages to include co-hosts of a greenhouse and a land-based shrimp farm. Phase I incorporates CO2 and heat waste streams from the operating power plant in an analysis of lowering and stabilizing the operating costs of the agriculture and aquaculture co-hosts. Phase II analysis incorporated a jet-fuel biorefinery and its secondary slip-stream of biochar which would be developed into two additional bio-products: 1) A soil amendment compost for agriculture and 2) A biochar effluent filter for the aquaculture. The second part of the study applied the Monte Carlo risk methodology to illustrate how co-location derisks investment in an integrated Bio-Hub versus individual investments in stand-alone projects of energy, agriculture or aquaculture. The analyzed scenarios compared reductions in both Capital and Operating Expenditures, which stabilizes profits and reduces the investment risk associated with projects in energy, agriculture, and aquaculture. The major findings of this techno-economic modeling using the Monte Carlo technique resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. In 2018, the site was designated as an economic opportunity zone as part of a Federal Program, which allows for Capital Gains tax benefits for investments on the site. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. The Bio-hub Ecosystems techno-economic analysis model is a critical model to expedite new standards for investments in circular zero-waste projects. Profitable projects will expedite adoption and advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable Bio-Economy paradigm that supports local and rural communities.Keywords: bio-economy, investment risk, circular design, economic modelling
Procedia PDF Downloads 1012250 Creep Behaviour of Asphalt Modified by Waste Polystyrene and Its Hybrids with Crumb Rubber and Low-Density Polyethylene
Authors: Soheil Heydari, Ailar Hajimohammadi, Nasser Khalili
Abstract:
Polystyrene, being made from a monomer called styrene, is a rigid and easy-to mould polymer that is widely used for many applications, from foam packaging to disposable containers. Considering that the degradation of waste polystyrene takes up to 500 years, there is an urgent need for a sustainable application for waste polystyrene. This study evaluates the application of waste polystyrene as an asphalt modifier. The inclusion of waste plastics in asphalt is either practised by the dry process or the wet process. In the dry process, plastics are added straight into the asphalt mixture and in the wet process, they are mixed and digested into bitumen. In this article, polystyrene was used as an asphalt modifier in a dry process. However, the mixing process is precisely designed to make sure that the polymer is melted and modified in the binder. It was expected that, due to the rigidity of polystyrene, it will have positive effects on the permanent deformation of the asphalt mixture. Therefore, different mixtures were manufactured with different contents of polystyrene and Marshall specimens were manufactured, and dynamic creep tests were conducted to evaluate the permanent deformation of the modification. This is a commonly repeated loading test conducted at different stress levels and temperatures. Loading cycles are applied to the AC specimen until failure occurs; with the amount of deformation constantly recorded the cumulative, permanent strain is determined and reported as a function of the number of cycles. Also, to our best knowledge, hybrid mixes of polystyrene with crumb rubber and low-density polyethylene were made and compared with a polystyrene-modified mixture. The test results of this study showed that the hybrid mix of polystyrene and low-density polyethylene has the highest resistance against permanent deformation. However, the polystyrene-modified mixture outperformed the hybrid mix of polystyrene and crumb rubber, and both demonstrated way lower permanent deformation than the unmodified specimen.Keywords: permanent deformation, waste plastics, polystyrene, hybrid plastics, hybrid mix, hybrid modification, dry process
Procedia PDF Downloads 1062249 Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder
Authors: Mohammed Abed, Rita Nemes
Abstract:
In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount.Keywords: cellular concrete powder, waste cellular concrete powder (WCCP), supplementary cementatious material, SCM, activity index, mechanical properties
Procedia PDF Downloads 2192248 A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic
Authors: Mohannad Mayyas, Farshid Pahlevani, Veena Sahajwalla
Abstract:
Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.Keywords: automotive shredder residue, nano-ceramics, waste treatment, titanium nitride, thermal conversion
Procedia PDF Downloads 2952247 Carbohydrates Quantification from Agro-Industrial Waste and Fermentation with Lactic Acid Bacteria
Authors: Prittesh Patel, Bhavika Patel, Ramar Krishnamurthy
Abstract:
Present study was conducted to isolate lactic acid bacteria (LAB) from Oreochromis niloticus and Nemipterus japonicus fish gut. The LAB isolated were confirmed through 16s rRNA sequencing. It was observed that isolated Lactococcus spp. were able to tolerate NaCl and bile acid up to certain range. The isolated Lactococcus spp. were also able to survive in acidic and alkaline conditions. Further agro-industrial waste like peels of pineapple, orange, lemon, sugarcane, pomegranate; sweet lemon was analyzed for their polysaccharide contents and prebiotic properties. In the present study, orange peels, sweet lemon peels, and pineapple peels give maximum indigestible polysaccharide. To evaluate synbiotic effect combination of probiotic and prebiotic were analyzed under in vitro conditions. Isolates Lactococcus garvieae R3 and Lactococcus sp. R4 reported to have better fermentation efficiency with orange, sweet lemon and pineapple compare to lemon, sugarcane and pomegranate. The different agro-industrial waste evaluated in this research resulted in being a cheap and fermentable carbon source by LAB.Keywords: agro-industrial waste, lactic acid bacteria, prebiotic, probiotic, synbiotic
Procedia PDF Downloads 1642246 Sainte Sophie Landfill: Field-Scale Assessment of Municipal Solid Waste Mechanical Characteristics
Authors: Wameed Alghazali, Shawn Kenny, Paul J. Van Geel
Abstract:
Settlement of municipal solid waste (MSW) in landfills can be represented by mechanical settlement, which is instantaneous and time-dependent creep components, and biodegradation-induced settlement. Mechanical settlement is governed by the physical characteristics of MSW and the applied overburden pressure. Several research studies used oedometers and different size compression cells to evaluate the primary and mechanical creep compression indices/ratios. However, MSW is known for its heterogeneity, which means data obtained from laboratory testing are not necessary to be a good representation of the mechanical response observed in the field. Furthermore, most of the laboratory tests found in the literature were conducted on shredded samples of MSW to obtain specimens that are suitable for the testing setup. It is believed that shredding MSW samples changes the physical and mechanical properties of the waste. In this study, settlement field data was collected during the filling stage of Ste. Sophie landfill was used to estimate the primary and mechanical creep compression ratios. The field results from Ste. Sophie landfill indicated that both the primary and mechanical creep compression ratios of MSW are not constants but decrease with the increase in the applied vertical stress.Keywords: mechanical creep compression ratio, municipal solid waste, primary compression ratio, stress level
Procedia PDF Downloads 952245 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer
Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal
Abstract:
Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)
Procedia PDF Downloads 1662244 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition
Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid
Abstract:
The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete
Procedia PDF Downloads 3122243 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates
Authors: R. Deju, M. Mincu, D. Gurau
Abstract:
During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management
Procedia PDF Downloads 2482242 Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production
Authors: Vinay Singh, Chandra Deo, Asit Chakrabarti, Lopamudra Sahoo, Mahak Singh, Rakesh Kumar, Dinesh Kumar, H. Bharati, Biswajit Das, V. K. Mishra
Abstract:
The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness.Keywords: choak, rice beer waste, laying hen, production performance, cost economics
Procedia PDF Downloads 592241 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values
Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne
Abstract:
Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil
Procedia PDF Downloads 3002240 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds
Procedia PDF Downloads 326