Search results for: traditional scheduling algorithms
6505 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations
Authors: K. P. Mredula, D. C. Vakaskar
Abstract:
The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods
Procedia PDF Downloads 2996504 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4546503 Implementing Learner-Centered Teaching Approach In Iraqi Higher Education
Authors: Iman Ali Ahmed Al-Rashed
Abstract:
This paper directs attention to the limitations of the teacher-centered strategy in teaching. The aim of this study is to draw more educational attention to learner-centered strategy in order to shift the emphasis from the traditional concept of teaching to a new concept in teaching. To begin bridging the traditional concept of teaching and the new concept, the study will explore the new concept of teaching to support teaching in Arab World generally and in Iraq specifically. A qualitative case study orientation was used to collect data in the form of classroom observations, interviews and field notes. The teaching practices used by three university instructors are investigated and according to the findings, some explanations and recommendations are made.Keywords: case study, learner-centered strategy, qualitative study, teacher-centered strategy, traditional teaching
Procedia PDF Downloads 5486502 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.Keywords: temporal graph network, anomaly detection, cyber security, IDS
Procedia PDF Downloads 1036501 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment
Procedia PDF Downloads 1026500 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models
Authors: Rodrigo Aguiar, Adelino Ferreira
Abstract:
Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.Keywords: machine learning, artificial intelligence, frequency of accidents, road safety
Procedia PDF Downloads 896499 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle
Authors: Vaclav Sadilek, Miroslav Vorechovsky
Abstract:
The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle
Procedia PDF Downloads 4056498 Inventory of Aromatic and Medicinal Plants Used in Natural Cosmetics in Western Algeria
Authors: Faiza Chaib, Yasmina-Nadia Bendahmane, Fatima Zohra Ghanemi
Abstract:
In order to know the traditional use of aromatic and medicinal plants in natural cosmetics, we carried out an ethnobotanical study using an online quiz among the Algerian population residing mainly in western Algeria (Oran, Tlemcen, and Mostaganem). Our study identified 37 plant species used as cosmetic plants, divided into 9 botanical families. The families mainly used and the richest in species are the lamiaceae, the apiecea, and the rutaceae. Our study states that the 5 species with the highest frequency of use and highest citation value are lemon, chamomile, turmeric, garlic, and lavender. Lemon takes first place in the order of frequency. The plants listed have been listed in tables grouping the identification of plants by their scientific and vernacular names, frequency of use, parts used, parts of the body concerned, desired action, as well as the main traditional recipes. This study allowed us to highlight the importance of aromatic plants and to appreciate their traditional practices in natural cosmetics.Keywords: aromatic plants, ethnobotanical survey, traditional use, natural cosmetics, questionnaire, western Algeria
Procedia PDF Downloads 1186497 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 3026496 Effect of Three Resistance Training Methods on Performance-Related Variables of Powerlifters
Authors: K. Shyamnath, K. Suresh Kutty
Abstract:
The purpose of the study was to find out the effect of three resistance training methods on performance-related variables of powerlifters. A total of forty male students (N=40) who had participated in Kannur University powerlifting championship were selected as subjects. The age group of the subjects ranged from 18 years old to 25 years old. The selected subjects were equally divided into four groups (n=10) of three experimental groups and a control group. The experimental Group I underwent traditional resistance training (TRTG), Group II underwent combined traditional resistance training and plyometrics (TRTPG), and Group III underwent combined traditional resistance training and resistance training with high rhythm (TRTHRG). Group IV acted as the control group (CG) receiving no training during the experimental period. The duration of the experimental period was sixteen weeks, five days per week. Powerlifting performance was assessed by the 1RM test in the squat, bench press and deadlift. Performance-related variables assessed were chest girth, arm girth, forearm girth, thigh girth, and calf girth. Pre-test and post-test were conducted a day before and two days after the experimental period on all groups. Analysis of covariance (ANCOVA) was applied to analyze the significant difference. The 0.05 level of confidence was fixed as the level of significance to test the F ratio obtained by the analysis of covariance. The result indicates that there is a significant effect of all the selected resistance training methods on the performance and selected performance-related variables of powerlifters. Combined traditional resistance training and plyometrics and combined traditional resistance training and resistance training with high rhythm proved better than the traditional resistance training in improving performance and selected performance-related variables of powerlifters. There was no significant difference between combined traditional resistance training and plyometrics and combined traditional resistance training and resistance training with high rhythm in improving performance and selected performance-related variables of powerlifters.Keywords: girth, plyometrics, powerlifting, resistance training
Procedia PDF Downloads 4896495 An Overview of Adaptive Channel Equalization Techniques and Algorithms
Authors: Navdeep Singh Randhawa
Abstract:
Wireless communication system has been proved as the best for any communication. However, there are some undesirable threats of a wireless communication channel on the information transmitted through it, such as attenuation, distortions, delays and phase shifts of the signals arriving at the receiver end which are caused by its band limited and dispersive nature. One of the threat is ISI (Inter Symbol Interference), which has been found as a great obstacle in high speed communication. Thus, there is a need to provide perfect and accurate technique to remove this effect to have an error free communication. Thus, different equalization techniques have been proposed in literature. This paper presents the equalization techniques followed by the concept of adaptive filter equalizer, its algorithms (LMS and RLS) and applications of adaptive equalization technique.Keywords: channel equalization, adaptive equalizer, least mean square, recursive least square
Procedia PDF Downloads 4506494 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints
Authors: Safa Adi
Abstract:
This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.Keywords: database, GTC algorithm, PSP algorithm, sequential patterns, time constraints
Procedia PDF Downloads 3906493 An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers
Authors: Ahmet Y. Arabul, Ibrahim Senol, Fatma Keskin Arabul, Mustafa G. Aydeniz, Yasemin Oner, Gokhan Kalkan
Abstract:
In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature.Keywords: Hot-spot temperature, monitoring system, power transformer, smart grid
Procedia PDF Downloads 5736492 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach
Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh
Abstract:
Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system. This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition
Procedia PDF Downloads 3826491 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 406490 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1076489 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 786488 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 3726487 Administrative Determinants of Students' Sports Participation in Private and Public Secondary Schools in Kwara State, Nigeria
Authors: Danjuma Moudu Momoh
Abstract:
Participation in sports is of immense benefit to the soundness of individual mental and social wellness, particularly among youngsters. The 1980’s and 1990’s compared to 2000’s witnessed great involvement of youngsters in school games arising from the high administrative supports attached to sports. Previous studies in an attempt to increase youngster’s participation in sports had focused more on other factors rather than on administrative factors. This study, therefore, investigated the importance of administrative factors (availability of facilities, availability of equipment, funding, scheduling of sports programme and administrative style of school principals) on students’ sports participation in private and public secondary schools in Kwara State, Nigeria. Descriptive survey research design using validated and structured questionnaire, was adopted. Stratified random sampling technique was used to pick the students both male and female. A total of two thousand five hundred and sixty participants were involved in the study. A reliable coefficient of r=0.82 was obtained for the instruments using Cronbach Alpha. Data were analyzed using multiple regressions to test the hypotheses at 00.5 significant levels. At the end of the study, it was discovered that the relative contributions of administrative factors among the students were: availability of facilities (β=0.314), availability of equipment (β=0.444), funding (β=0.301), scheduling of sports programme (β=0.447), made relative contributions to the dependent variable, administrative style of school principal (β=0.077) did not make significant but minimal contribution to the student’s sports participation.Keywords: administrative determinants, secondary school students, physical activity, sports participation
Procedia PDF Downloads 5526486 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions
Procedia PDF Downloads 5906485 Symmetry Properties of Linear Algebraic Systems with Non-Canonical Scalar Multiplication
Authors: Krish Jhurani
Abstract:
The research paper presents an in-depth analysis of symmetry properties in linear algebraic systems under the operation of non-canonical scalar multiplication structures, specifically semirings, and near-rings. The objective is to unveil the profound alterations that occur in traditional linear algebraic structures when we replace conventional field multiplication with these non-canonical operations. In the methodology, we first establish the theoretical foundations of non-canonical scalar multiplication, followed by a meticulous investigation into the resulting symmetry properties, focusing on eigenvectors, eigenspaces, and invariant subspaces. The methodology involves a combination of rigorous mathematical proofs and derivations, supplemented by illustrative examples that exhibit these discovered symmetry properties in tangible mathematical scenarios. The core findings uncover unique symmetry attributes. For linear algebraic systems with semiring scalar multiplication, we reveal eigenvectors and eigenvalues. Systems operating under near-ring scalar multiplication disclose unique invariant subspaces. These discoveries drastically broaden the traditional landscape of symmetry properties in linear algebraic systems. With the application of these findings, potential practical implications span across various fields such as physics, coding theory, and cryptography. They could enhance error detection and correction codes, devise more secure cryptographic algorithms, and even influence theoretical physics. This expansion of applicability accentuates the significance of the presented research. The research paper thus contributes to the mathematical community by bringing forth perspectives on linear algebraic systems and their symmetry properties through the lens of non-canonical scalar multiplication, coupled with an exploration of practical applications.Keywords: eigenspaces, eigenvectors, invariant subspaces, near-rings, non-canonical scalar multiplication, semirings, symmetry properties
Procedia PDF Downloads 1236484 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 416483 The Double Standard: Ethical Issues and Gender Discrimination in Traditional Western Ethics
Authors: Merina Islam
Abstract:
The feminists have identified the traditional western ethical theories as basically male centered. Feminists are committed to develop a critique showing how the traditional western ethics together with traditional philosophy, irrespective of the claim for gender neutrality, all throughout remained gender-biased. This exclusion of women’s experiences from the moral discourse is justified on the ground that women cannot be moral agents, since they are not rational. By way of entailment, we are thus led to the position that virtues of traditional ethics, so viewed, can nothing but rational and hence male. The ears of traditional Western ethicists have been attuned to male rather than female ethical voices. Right from the Plato, Aristotle, Augustine, Aquinas, Rousseau, Kant, Hegel and even philosophers like Freud, Schopenhauer, Nietzsche and many others the dualism between reason-passion or mind and body started gaining prominence. These, according to them, have either intentionally excluded women or else have used certain male moral experience as the standard for all moral experiences, thereby resulting once again in exclusion of women’s experiences. Men are identified with rationality and hence contrasted with women whose sphere is believed to be that of emotion and feeling. This act of exclusion of women’s experience from moral discourse has given birth to a tradition that emphasizes reason over emotion, universal over the particular, and justice over caring. That patriarchy’s use of gender distinctions in the realm of Ethics has resulted in gender discriminations is an undeniable fact. Hence women’s moral agency is said to have often been denied, not simply by the act of exclusion of women from moral debate or sheer ignorance of their contributions, but through philosophical claims to the effect that women lack moral reason. Traditional or mainstream ethics cannot justify its claim for universality, objectivity and gender neutrality the standards from which were drawn the legitimacy of the various moral maxims or principles of it. Right from the Platonic and Aristotelian period the dualism between reason-passion or mind and body started gaining prominence. Men are identified with rationality and hence contrasted with women whose sphere is believed to be that of emotion and feeling. Through the Association of the masculine values with reason (the feminine with irrational), was created the standard prototype of moral virtues The feminists’ critique of the traditional mainstream Ethics is based on this charge that because of its inherent gender bias, in the name of gender distinctions, Ethics has so far been justifying discriminations. In this paper, attempt would make upon the gender biased-ness of traditional ethics. But Feminists are committed to develop a critique showing how the traditional ethics together with traditional philosophy, irrespective of the claim for gender neutrality, all throughout remained gender-biased. We would try to show to what extent traditional ethics is male centered and consequentially fails to justify its claims for universality and gender neutrality.Keywords: ethics, gender, male-centered, traditional
Procedia PDF Downloads 4286482 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction
Procedia PDF Downloads 5316481 Reviewing the Public Participation Criteria in Traditional Cities: To Achieve Social Sustainability
Authors: Najmeh Malekpour Bahabadi
Abstract:
Small fast-developing Iranian cities with a historical background have no defined criteria for their social sustainability. However, their traditional architecture is well-known as a socially and environmentally sustainable role model. In today's cities, citizens' participation has been considered an effective strategy to achieve social sustainability. By scrutinizing the extent and manner of public participation in traditional Iranian cities, taking Yazd's historical context as a case study, this study examines how these criteria can be applied to developing parts of the city. The paper first reviews the concepts, levels, and approaches of public participation to analyze different modes of citizen participation. Then, exploring social behavior and activities in Yazd, using the qualitative-analytical methodology, the paper compares diverse elements influencing participation with contemporary approaches. The findings of this study would lead to suggestions for the developing parts of the city to enhance their socially sustainable development.Keywords: citizen participation, social behaviors, traditional city, built environment, social sustainability
Procedia PDF Downloads 1276480 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)
Authors: Ahmed E. Hodaib, Mohamed A. Hashem
Abstract:
In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization
Procedia PDF Downloads 2566479 Ethiopian Textile and Apparel Industry: Study of the Information Technology Effects in the Sector to Improve Their Integrity Performance
Authors: Merertu Wakuma Rundassa
Abstract:
Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Increasingly, traditional centralized and sequential manufacturing planning, scheduling, and control mechanisms are being found insufficiently flexible to respond to changing production styles and highly dynamic variations in product requirements. The traditional approaches limit the expandability and reconfiguration capabilities of the manufacturing systems. Thus many business houses face increasing pressure to lower production cost, improve production quality and increase responsiveness to customers. In a textile and apparel manufacturing, globalization has led to increase in competition and quality awareness and these industries have changed tremendously in the last few years. So, to sustain competitive advantage, companies must re-examine and fine-tune their business processes to deliver high quality goods at very low costs and it has become very important for the textile and apparel industries to integrate themselves with information technology to survive. IT can create competitive advantages for companies to improve coordination and communication among trading partners, increase the availability of information for intermediaries and customers and provide added value at various stages along the entire chain. Ethiopia is in the process of realizing its potential as the future sourcing location for the global textile and garments industry. With a population of over 90 million people and the fastest growing non-oil economy in Africa, Ethiopia today represents limitless opportunities for international investors. For the textile and garments industry Ethiopia promises a low cost production location with natural resources such as cotton to enable the setup of vertically integrated textile and garment operation. However; due to lack of integration of their business activities textile and apparel industry of Ethiopia faced a problem in that it can‘t be competent in the global market. On the other hand the textile and apparel industries of other countries have changed tremendously in the last few years and globalization has led to increase in competition and quality awareness. So the aim of this paper is to study the trend of Ethiopian Textile and Apparel Industry on the application of different IT system to integrate them in the global market.Keywords: information technology, business integrity, textile and apparel industries, Ethiopia
Procedia PDF Downloads 3636478 Quality-Of-Service-Aware Green Bandwidth Allocation in Ethernet Passive Optical Network
Authors: Tzu-Yang Lin, Chuan-Ching Sue
Abstract:
Sleep mechanisms are commonly used to ensure the energy efficiency of each optical network unit (ONU) that concerns a single class delay constraint in the Ethernet Passive Optical Network (EPON). How long the ONUs can sleep without violating the delay constraint has become a research problem. Particularly, we can derive an analytical model to determine the optimal sleep time of ONUs in every cycle without violating the maximum class delay constraint. The bandwidth allocation considering such optimal sleep time is called Green Bandwidth Allocation (GBA). Although the GBA mechanism guarantees that the different class delay constraints do not violate the maximum class delay constraint, packets with a more relaxed delay constraint will be treated as those with the most stringent delay constraint and may be sent early. This means that the ONU will waste energy in active mode to send packets in advance which did not need to be sent at the current time. Accordingly, we proposed a QoS-aware GBA using a novel intra-ONU scheduling to control the packets to be sent according to their respective delay constraints, thereby enhancing energy efficiency without deteriorating delay performance. If packets are not explicitly classified but with different packet delay constraints, we can modify the intra-ONU scheduling to classify packets according to their packet delay constraints rather than their classes. Moreover, we propose the switchable ONU architecture in which the ONU can switch the architecture according to the sleep time length, thus improving energy efficiency in the QoS-aware GBA. The simulation results show that the QoS-aware GBA ensures that packets in different classes or with different delay constraints do not violate their respective delay constraints and consume less power than the original GBA.Keywords: Passive Optical Networks, PONs, Optical Network Unit, ONU, energy efficiency, delay constraint
Procedia PDF Downloads 2846477 Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model
Authors: Riccardo Loggia, Francesca Pizzimenti, Francesco Lelli, Luigi Martirano
Abstract:
Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station.Keywords: electric vehicles, charging stations, sharing model, fast charging, car park, power profiles
Procedia PDF Downloads 1556476 Investigating Conflict Between Traditional Cultural Practices for Women and South African Government Laws
Authors: Hebert Sihle Ntuli
Abstract:
Traditional cultural practices mirror or replicate the values and beliefs held by members of the community. Throughout the world, every social grouping has specific traditional practices, some of which are beneficial to all, while others have become harmful to specific group such as women. Like in some African states, these traditional cultural practices are performed in South Africa and are violating women’s rights. Women’s rights are human rights. The South African Constitution is one of the most progressive in the world, and notable includes the Bill of Rights which provides protection of socio-economic and cultural rights. Cultural rights are protected in Section 30 and 31 of the constitution, although such protection is not without limitation. This highly complex interplay and competition between human rights and cultural rights, which are manifested through cultural practices, is the golden thread that traces through this paper. The paper argues that there is conflict and the lack of balance between diverse cultural and legal or constitutional framework which promotes the value of human dignity and equality, especially for women. These practices are reviewed in connection with the South African government laws. This work adopted qualitative research method.Keywords: cultural practices, conflict, South African constitution, laws
Procedia PDF Downloads 112