Search results for: experimental method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23833

Search results for: experimental method

23233 A Novel Image Steganography Method Based on Mandelbrot Fractal

Authors: Adnan H. M. Al-Helali, Hamza A. Ali

Abstract:

The growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Image Fidelity (IF) over the pervious techniques.

Keywords: fractal image, information hiding, Mandelbrot set fractal, steganography

Procedia PDF Downloads 604
23232 Effectiveness of Integrative Behavioral Couples Therapy on the Communication Patterns of Couples Applying for Divorce

Authors: Sakineh Abbasi Bourondaragh

Abstract:

The aim of this research is effectiveness of integrative behavioral couples therapy on the communication patterns of couples applying for divorce. We selected (N=20) reports from Tabriz Family Judicial Complex (FJC) of couples which have conflict in their marital relationships. All of reports were released during 2012. First, they were randomly divided into two experimental and control groups and all the couples were given pre-test. They participated in twelve therapy sessions. Then the experimental group was exposed to an experimental intervention, but the control group was not received experimental intervention. The subjects were treated. At the end of treatment, a post-test was performed about subjects (each of two groups).The results showed that integrative behavioral couple therapy could increase and improve communication patterns. The findings also showed that integrative behavioral couples therapy had increased mutual constructive pattern and decreased demand/withdraw pattern and mutual avoidance pattern of CPQ sub-scale. Steady change indicator showed that the difference is clinically meaningful.

Keywords: integrative behavioral couple therapy, communication patterns, cognitive sciences, Family Judicial Complex

Procedia PDF Downloads 307
23231 An Approach to Improve Pre University Students' Responsible Environmental Behaviour through Science Writing Heuristic in Malaysia

Authors: Sheila Shamuganathan, Mageswary Karpudewan

Abstract:

This study investigated the effectiveness of green chemistry integrated with Science Writing Heuristic (SWH) in enhancing matriculation students’ responsible environmental behaviour. For this purpose 207 matriculation students were randomly assigned into experimental (N=118) and control (N=89) group. For the experimental group the chemistry concepts were taught using the instructional approach of green chemistry integrated with Science Writing Heuristic (SWH) while for the control group the same content was taught using green chemistry. The data was analysed using ANCOVA and findings obtained from the quantitative analysis reveals that there is significant changes in responsible environmental behaviour (F 1,204) = 32.13 (ηp² = 0.14) which favours the experimental group. The responses of the qualitative data obtained from an interview with the experimental group also further strengthen and indicated a significant improvement in responsible environmental behaviour. The outcome of the study suggests that using green chemistry integrated with Science Writing Heuristic (SWH) could be an alternative approach to improve students’ responsible environmental behaviour towards the environment.

Keywords: science writing heuristic, green chemistry, pro environmental behaviour, laboratory

Procedia PDF Downloads 292
23230 The Effect of Randomly Distributed Polypropylene Fibers and Some Additive Materials on Freezing-Thawing Durability of a Fine-Grained Soil

Authors: A. Şahin Zaimoglu

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6,12 and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20 % BG, 0-20 % FA, 0-0.25 % PP and 0-3 % of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.

Keywords: freezing-thawing, additive materials, reinforced soil, optimization

Procedia PDF Downloads 292
23229 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 560
23228 Effectiveness of Metacognitive Therapy in Metacognitive Beliefs, Anxiety and Social Phobia of Male High School Students

Authors: Saba Hasanvandi, Molok Khademi Ashkezari, Niloofar Esmaieli

Abstract:

The research purpose was to assess the effectiveness of metacognitive therapy in metacognitive beliefs, anxiety and social phobia of male students studying in the high schools of Dargaz City. The sample comprised 30 students who were randomly selected and assigned to the experimental and control groups. The kind of this study was experimental study with pre-ops and follow-up stages. Subjects filled out metacognitive beliefs, anxiety and social phobia questionnaires. The experimental group underwent 10 sessions of therapeutic metacognitive sessions. The group therapy was conducted for ten, weekly, 90-minute sessions. Mankova analysis was utilized to analyze the data. Results revealed that metacognitive group therapy decreased metacognitive beliefs (P=0.007), anxiety (P<0.001) and social phobia (P=<0.017) in the experimental group as compared to the control group. Furthermore, the effectiveness of group metacognitive therapy was stable and consistent after one month of time interval. The results of present study can be effective for mental health professional in reaching a better understanding of anxiety and social phobia.

Keywords: group metacognitive therapy, metacognitive beliefs, anxiety, social phobia, high school students

Procedia PDF Downloads 572
23227 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 364
23226 Pilot Scale Sub-Surface Constructed Wetland: Evaluation of Performance of Bed Vegetated with Water Hyacinth in the Treatment of Domestic Sewage

Authors: Abdul-Hakeem Olatunji Abiola, A. E. Adeniran, A. O. Ajimo, A. B. Lamilisa

Abstract:

Introduction: Conventional wastewater treatment technology has been found to fail in developing countries because they are expensive to construct, operate and maintain. Constructed wetlands are nowadays considered as a low-cost alternative for effective wastewater treatment, especially where suitable land can be available. This study aims to evaluate the performance of the constructed wetland vegetated with water hyacinth (Eichhornia crassipes) plant for the treatment of wastewater. Methodology: The sub-surface flow wetland used for this study was an experimental scale constructed wetland consisting of four beds A, B, C, and D. Beds A, B, and D were vegetated while bed C which was used as a control was non-vegetated. This present study presents the results from bed B vegetated with water hyacinth (Eichhornia crassipes) and control bed C which was non-vegetated. The influent of the experimental scale wetland has been pre-treated with sedimentation, screening and anaerobic chamber before feeding into the experimental scale wetland. Results: pH and conductivity level were more reduced, colour of effluent was more improved, nitrate, iron, phosphate, and chromium were more removed, and dissolved oxygen was more improved in the water hyacinth bed than the control bed. While manganese, nickel, cyanuric acid, and copper were more removed from the control bed than the water hyacinth bed. Conclusion: The performance of the experimental scale constructed wetland bed planted with water hyacinth (Eichhornia crassipes) is better than that of the control bed. It is therefore recommended that plain bed without any plant should not be encouraged.

Keywords: constructed experimental scale wetland, domestic sewage, treatment, water hyacinth

Procedia PDF Downloads 116
23225 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil

Authors: Mutadi

Abstract:

Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.

Keywords: soft soil, deflection, wall, pipeline

Procedia PDF Downloads 149
23224 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal

Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi

Abstract:

Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.

Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt

Procedia PDF Downloads 424
23223 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 441
23222 Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

Authors: H. Hazar, S. Sap

Abstract:

In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating the internal and external parts of the exhaust pipe was reduced and its effects on harmful exhaust emissions were investigated. As a result of the experiments; a remarkable improvement was determined in emission values as a result of delay in cooling of exhaust gases due to the coating.

Keywords: chrome carbide, diesel engine, exhaust emission, thermal barrier

Procedia PDF Downloads 252
23221 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves

Procedia PDF Downloads 119
23220 Ductility Spectrum Method for the Design and Verification of Structures

Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour

Abstract:

This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.

Keywords: seismic demand, capacity, inelastic spectra, design and structure

Procedia PDF Downloads 382
23219 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method

Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva

Abstract:

In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.

Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method

Procedia PDF Downloads 96
23218 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 247
23217 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach

Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier

Abstract:

The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.

Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis

Procedia PDF Downloads 89
23216 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics

Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García

Abstract:

Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.

Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics

Procedia PDF Downloads 281
23215 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation

Procedia PDF Downloads 230
23214 Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units

Authors: Meltem Kürtüncü, Işın Alkan

Abstract:

Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units.

Keywords: lullaby, mother voice, relaxation, stress

Procedia PDF Downloads 214
23213 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing

Procedia PDF Downloads 128
23212 The Pressure Effect and First-Principles Study of Strontium Chalcogenides SrS

Authors: Benallou Yassine, Amara Kadda, Bouazza Boubakar, Soudini Belabbes, Arbouche Omar, M. Zemouli

Abstract:

The study of the pressure effect on the materials, their functionality and their properties is very important, insofar as it provides the opportunity to identify others applications such the optical properties in the alkaline earth chalcogenides, as like the SrS. Here we present the first-principles calculations which have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. The treatments of exchange and correlation effects were done by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential for the electronic. The pressure effect on the electronic properties was visualized by calculating the variations of the gap as a function of pressure. The obtained results are compared to available experimental data and to other theoretical calculations

Keywords: SrS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW, pressure effect

Procedia PDF Downloads 552
23211 Experimental Film Class: Watbangkapom School, Samut Songkhram

Authors: J. Areerut

Abstract:

Experimental Film Class Project is supported by the Institute for Research and Development at Suan Sunandha Rajabhat University. This project is purported to provide academic and professional services to improve the quality standards of the community and locals in accordance with the mission of the university, which is to improve and expand knowledge for the community and to develop and transfer such knowledge and professions to the next generation. Eventually, it leads to sustainable development because the development of human resources is deemed as the key for sustainable development. Moreover, the Experimental Film Class is an integral part of the teaching of film production at Suan Sunandha International School of Art (SISA). By means of giving opportunities to students for participation in projects by sharing experience, skill and knowledge and participation in field activities, it helps students in the film production major to enhance their abilities and potentials as preparation for their readiness in the marketplace. Additionally, in this class, we provide basic film knowledge, screenwriting techniques, editing and subtitles including uploading videos on social media such as YouTube and Facebook for the participant students.

Keywords: experimental film class, Watbangkapom School, participant students, basic of film production, film workshop

Procedia PDF Downloads 324
23210 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 259
23209 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data

Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.

Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry

Procedia PDF Downloads 208
23208 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir V. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics

Procedia PDF Downloads 365
23207 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model

Authors: K. Khanafer

Abstract:

The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.

Keywords: aortic dissection, fluid-structure interaction, in vitro model, numerical

Procedia PDF Downloads 259
23206 Theoretical and Experimental Bending Properties of Composite Pipes

Authors: Maja Stefanovska, Svetlana Risteska, Blagoja Samakoski, Gari Maneski, Biljana Kostadinoska

Abstract:

Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted according to ASTM D790 standard. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis.

Keywords: bending properties, composite pipe, winding design, SEM

Procedia PDF Downloads 311
23205 Modeling Solute Transport through Porous Media with Scale Dependent Dispersion

Authors: Teodrose Atnafu Abegaze, P. K. Sharma

Abstract:

In this study, an attempt has been made to study the behavior of breakthrough curves in both layered and mixed heterogeneous soil by conducting experiments in long soil columns. Sodium chloride has been used as a conservative tracer in the experiment. Advective dispersive transport equations, including equilibrium sorption and first-order degradation coefficients, are used for solute transport through mobile-immobile porous media. In order to do the governing equation for solute transport, there are explicit and implicit schemes for our condition; we use an implicit scheme to numerically model the solute concentration. Results of experimental breakthrough curves indicate that the behavior of observed breakthrough curves is approximately similar in both cases of layered and mixed soil, while earlier arrival of solute concentration is obtained in the case of mixed soil. It means that the types of heterogeneity of the soil media affect the behavior of solute concentration. Finally, it is also shown that the asymptotic dispersion model simulates the experimental data better than the constant and linear distance-dependent dispersion models.

Keywords: numerical method, distance dependant dispersion, reactive transport, experiment

Procedia PDF Downloads 47
23204 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 111