Search results for: electrochemical separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1981

Search results for: electrochemical separation

1381 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis

Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin

Abstract:

With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.

Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism

Procedia PDF Downloads 266
1380 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.

Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption

Procedia PDF Downloads 263
1379 Protective Effect of Essential Oil from Chamaecyparis obtusa on Anxiety-Related Behaviors and Cytokine Abnormalities Induced by Early Life Stress

Authors: Hae Jeong Park, Joo-Ho Chung

Abstract:

In this study, the effect of essential oil from Chamaecyparis obtuse (EOCO) on early life stress using maternal separation (MS) rats was investigated. Anxiety-related behaviors were examined in MS rats using the elevated plus-maze (EPM) test. The changes of gene expressions by EOCO in the hippocampus of MS rats were analyzed using a microarray method. Rats in the MS groups were separated from their respective mothers from postnatal day (pnd) 14 to 28. Rats in the EOCO-treated groups were exposed to EOCO for 1 h or 2 h by inhalation from pnd 21 to 28. The EOCO-treated MS rats showed decreased anxiety-related behaviors compared to the MS rats in the EPM test. In the microarray analysis, EOCO downregulated the expressions of cytokine genes such as Ccl2, Il6, Cxcl10, Ccl19, and Il1rl in the hippocampus of MS rats, and it was also confirmed through RT-PCR. In particular, the expressions of Ccl2 and Il6 were predominantly decreased by EOCO in the hippocampus of MS rats. Interestingly, their protein expressions were also reduced by EOCO in MS rats. These results indicate that EOCO decreases MS-induced anxiety-related behaviors, and modulate cytokines, particularly Ccl2 and Il6, in the hippocampus of MS rats.

Keywords: anxiety-related behavior, Chamaecyparis obtuse, cytokine gene, early-life stress, maternal separation

Procedia PDF Downloads 389
1378 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water

Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing

Abstract:

As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.

Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium

Procedia PDF Downloads 451
1377 Resolving Conflicts of Constitutional Nature: Inside the Romanian Constitutional Court's Rulings on the Role and Competencies of the Public Authorities

Authors: Marieta Safta

Abstract:

The separation and balance of state powers constitute the basis of the rule of law. Observance of this principle requires framing of public authorities within the limits of competence established by the Constitution and the law, as well as loyal cooperation between them. From this perspective, the attribution of the constitutional courts for settling legal conflicts of a constitutional nature is an important tool for correcting the tendencies of violation of these limits, as well as for identifying solutions for situations that do not find an explicit regulation in the constitutional texts. The present study analyzes the jurisprudence of the Constitutional Court of Romania in the field of legal conflicts of a constitutional nature, revealing, together with the presentation of conflict situations, the vulnerabilities of the constitutional reference texts. It is also highlighted the role of the constitutional courts in the evolution of constitutional law institutions, even in terms of defining and redefining the regime of the forms of government. The conclusion of the study, beyond the subject of legal conflicts of a constitutional nature, bears on the necessity, even more so in this matter, of the certainty of jurisdictional interpretation. This certainty cannot be achieved as long as the interpretation is not authoritative; consequently, the assurance of the effectiveness of constitutional justice constitute a key issue of the rule of law.

Keywords: legal conflicts of constitutional nature, the Constitutional Court of Romania, the separation and balance of powers in the state, the effectiveness of constitutional justice

Procedia PDF Downloads 130
1376 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments

Authors: Netsanet Kebede Hundessa

Abstract:

Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.

Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation

Procedia PDF Downloads 70
1375 Isolation and Characterization of Anti-melanoma (Skin Cancer) Compounds from Corchorus olitorius .L

Authors: Peramachi Sathiyamoorthy, Jacop Gopas, Avi Golan Goldhirsh

Abstract:

Corchorus olitorius is a leafy vegetable and an industrial crop. The herb has antioxidant, anti inflammatory, and anti-cancer properties. To assay the pharmaceutical properties, aqueous extracts of leaves and seeds from C. olitorius were tested against drug resistant melanoma cell line. The test showed LC50 of the extract was 0.08µg/ml. Aqueous seed extract exhibited higher melanoma inhibiting activity than leaf extract. Dialysis of seed extract showed that the active compound is less than 12 KDa. The compound with <3 KDa MW separated by microconcentration of seed extract showed 70.5 % inhibition of melanoma cell growth. Among the two fractions obtained by Gel filtration with G10 column, the first fraction at 1:2000 dilutions exhibited 100% inhibition of melanoma growth. The compound with Rf value 0.86 (MA4) isolated by TLC separation showed about 98% cytotoxicity against melanoma at 1: 1000 dilutions. Furthermore, HPLC separation of MA4 compound with Superdex 75 column resulted in 4 compounds. Out of 4, one compound showed melanoma inhibition. The active compound is identified by reagent methods as Strophanthidin. Further toxicological and clinical studies will lead to the development of a potential drug to treat drug resistant melanoma.

Keywords: corchorus olitorius, melanoma, drug development, strophanthidin

Procedia PDF Downloads 131
1374 Use of Oral Midazolam in Endoscopy

Authors: Alireza Javadzadeh

Abstract:

Background: The purpose of this prospective, randomized study was to compare the safety and efficacy of oral versus i.v. midazolam in providing sedation for pediatric upper gastrointestinal (GI) endoscopy. Methods: Sixty-one children (age < 16 years) scheduled for upper GI endoscopy were studied. Patients were randomly assigned to receive oral or i.v. midazolam. Measurements were made and compared for vital signs, level of sedation, pre- and post-procedure comfort, anxiety during endoscopy, ease of separation from parents, ease and duration of procedure, and recovery time. Results: Patients were aged 1–16 years (mean 7.5 ± 3.42 years); 30 patients received oral medication, and 31 received i.v. medication. There were no statistically significant differences in age or gender between groups. There were no significant differences in level of sedation, ease of separation from parents, ease of ability to monitor the patient during the procedure, heart rate, systolic arterial pressure, or respiratory rate. Oxygen saturation was significantly lower in the i.v. group than the oral group 10 and 30 min after removal of the endoscope, and recovery time was longer in the oral than the i.v. group. Conclusions: Oral administration of midazolam is a safe and effective method of sedation that significantly reduces anxiety and improves overall tolerance for children undergoing esophagogastroduodenoscopy.

Keywords: children, endoscopy, midazolam, oral, sedation

Procedia PDF Downloads 345
1373 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health

Authors: R. Sanchez-Salcedo, N. H. Voelcker

Abstract:

Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.

Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs

Procedia PDF Downloads 20
1372 Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions

Authors: Anahita Mortazavi Manesh, Mojtaba Bagherzadeh

Abstract:

Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical.

Keywords: Fe3O4 nanoparticle, immobilized metalloporphyrin, magnetically separable nanocatalyst, oxidation reactions

Procedia PDF Downloads 300
1371 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 191
1370 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 155
1369 The Treatment of Nitrate Polluted Groundwater Using Bio-electrochemical Systems Inoculated with Local Groundwater Sediments

Authors: Danish Laidin, Peter Gostomski, Aaron Marshall, Carlo Carere

Abstract:

Groundwater contamination of nitrate (NO3-) is becoming more prevalent in regions of intensive and extensive agricultural activities. Household nitrate removal involves using ion exchange membranes and reverse osmosis (RO) systems, whereas industrial nitrate removal may use organic carbon substrates (e.g. methanol) for heterotrophic microbial denitrification. However, these approaches both require high capital investment and operating costs. In this study, denitrification was demonstrated using bio-electrochemical systems (BESs) inoculated from sediments and microbial enrichment cultures. The BES reactors were operated continuously as microbial electrolytic cells (MECs) with a poised potential of -0.7V and -1.1V vs Ag/AgCl. Three parallel MECs were inoculated using hydrogen-driven denitrifying enrichments, stream sediments, and biofilm harvested from a denitrifying biotrickling filter, respectively. These reactors were continuously operated for over a year as various operating conditions were investigated to determine the optimal conditions for electroactive denitrification. The mass loading rate of nitrate was varied between 10 – 70 mg NO3-/d, and the maximum observed nitrate removal rate was 22 mg NO3- /(cm2∙d) with a current of 2.1 mA. For volumetric load experiments, the dilution rate of 1 mM NO3- feed was varied between 0.01 – 0.1 hr-1 to achieve a nitrate loading rate similar to the mass loading rate experiments. Under these conditions, the maximum rate of denitrification observed was 15.8 mg NO3- /(cm2∙d) with a current of 1.7mA. Hydrogen (H2) was supplied intermittently to investigate the hydrogenotrophic potential of the denitrifying biofilm electrodes. H2 supplementation at 0.1 mL/min resulted in an increase of nitrate removal from 0.3 mg NO3- /(cm2∙d) to 3.4 mg NO3- /(cm2∙d) in the hydrogenotrophically subcultured reactor but had no impact on the reactors which exhibited direct electron transfer properties. Results from this study depict the denitrification performance of the immobilized biofilm electrodes, either by direct electron transfer or hydrogen-driven denitrification, and the contribution of the planktonic cells present in the growth medium. Other results will include the microbial community analysis via 16s rDNA amplicon sequencing, varying the effect of poising cathodic potential from 0.7V to 1.3V vs Ag/AgCl, investigating the potential of using in-situ electrochemically produced hydrogen for autotrophic denitrification and adjusting the conductivity of the feed solution to mimic groundwater conditions. These findings highlight the overall performance of sediment inoculated MECs in removing nitrate and will be used for the future development of sustainable solutions for the treatment of nitrate polluted groundwater.

Keywords: bio-electrochemical systems, groundwater, electroactive denitrification, microbial electrolytic cell

Procedia PDF Downloads 66
1368 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 184
1367 Children and Parents Left behind in Transnational Families: The Problem of Care Deficit

Authors: Joanna Bielecka-Prus

Abstract:

In the view of increasing number of labour migrations associated with broadly understood economic crisis, many families experience migration separation. Currently, in the era of globalization, migration movements include an increasing number of families, more and more frequently a new type of family, a transnational family. Accordingly, the functions of the family, family practice of care, and the relationships between members of the group change especially in the case of female migration. Sociologists highlight the emotional aspects of migrants’ family lives: managing emotions, coping with guilt, loneliness and rejection. Not without significance is the fact that today's public discourse often represents migrant women in a negative light. On the one hand, consumption and expanding material resources are assessed positively, on the other hand, deficits emotional and devastation of family life in the transnational families appear. Opinions expressed by different environments: the media, the political environment, etc. do not always take into account the context of mobility and their different effects on family life. The paper will present the analysis of qualitative studies of Polish female migrants’ families left-behind (children, parents, caregivers N = 100) and their coping strategies in different situations in the event of migration separation. The main area of care deficit will be defined and it will be showed who and how help to solve the problems.

Keywords: care, children left behind, female migration, parents left behind

Procedia PDF Downloads 397
1366 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines

Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya

Abstract:

Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.

Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry

Procedia PDF Downloads 317
1365 The Effect of Torsional Angle on Reversible Electron Transfer in Donor: Acceptor Frameworks Using Bis(Imino)Pyridines as Proxy

Authors: Ryan Brisbin, Hassan Harb, Justin Debow, Hrant Hratchian, Ryan Baxter

Abstract:

Donor-Acceptor (DA) frameworks are crucial parts of any technology requiring charge transport. This type of behavior is ubiquitous across technologies from semi conductors to solar panels. Currently, most DA systems involve metallic components, but progressive research is being pursued to design fully organic DA systems to be used as both organic semi-conductors and light emitting diodes. These systems are currently comprised of conductive polymers and salts. However, little is known about the effect of various physical aspects (size, torsional angle, electron density) have on the act of reversible charge transfer. Herein, the effect of torsional angle on reductive stability in bis(imino)pyridines is analyzed using a combination of single crystal analysis and electro-chemical peak current ratios from cyclic voltammetry. The computed free energies of reduction and electron attachment points were also investigated through density functional theory and natural ionization orbital theory to gain greater understanding of the global effect torsional angles have on electron transfer in bis(imino)pyridines. Findings indicated that torsional angles are a multi-variable parameter affected by both local steric constraints and resonant electronic contributions. Local steric impacted torsional angles demonstrated a negligible effect on electrochemical reversibility, while resonant affected torsional angles were observed to significantly alter the electrochemical reversibility.

Keywords: cyclic voltammetry, bis(imino)pyridines, structure-activity relationship, torsional angles

Procedia PDF Downloads 238
1364 Adhesion of Biofilm to Surfaces Employed in Pipelines for Transporting Crude Oil

Authors: Hadjer Didouh, Izzaddine Sameut Bouhaik, Mohammed Hadj Meliani

Abstract:

This research delves into the intricate dynamics of biofilm adhesion on surfaces, particularly focusing on the widely employed X52 surface in oil and gas industry pipelines. Biofilms, characterized by microorganisms within a self-produced matrix, pose significant challenges due to their detrimental impact on surfaces. Our study integrates advanced molecular techniques and cutting-edge microscopy, such as scanning electron microscopy (SEM), to identify microbial communities and visually assess biofilm adhesion. Simultaneously, we concentrate on the X52 surface, utilizing impedance spectroscopy and potentiodynamic polarization to gather electrochemical responses under various conditions. In conjunction with the broader investigation, we propose a novel approach to mitigate biofilm-induced corrosion challenges. This involves environmentally friendly inhibitors derived from plants, offering a sustainable alternative to conventional chemical treatments. Our inquiry screens and selects inhibitors based on their efficacy in hindering biofilm formation and reducing corrosion rates on the X52 surface. This study contributes valuable insights into the interplay between electrochemical processes and biofilm attachment on the X52 surface. Furthermore, the outcomes of this research have broader implications for the oil and gas industry, where biofilm-related corrosion is a persistent concern. The exploration of eco-friendly inhibitors not only holds promise for corrosion control but also aligns with environmental considerations and sustainability goals. The comprehensive nature of this research aims to enhance our understanding of biofilm dynamics, provide effective strategies for corrosion mitigation, and contribute to sustainable practices in pipeline management within the oil and gas sector.

Keywords: bio-corrosion, biofilm, attachment, X52, metal/bacteria interface

Procedia PDF Downloads 48
1363 Fabrication of 2D Nanostructured Hybrid Material-Based Devices for High-Performance Supercapacitor Energy Storage

Authors: Sunil Kumar, Vinay Kumar, Mamta Bulla, Rita Dahiya

Abstract:

Supercapacitors have emerged as a leading energy storage technology, gaining popularity in applications like digital telecommunications, memory backup, and hybrid electric vehicles. Their appeal lies in a long cycle life, high power density, and rapid recharge capabilities. These exceptional traits attract researchers aiming to develop advanced, cost-effective, and high-energy-density electrode materials for next-generation energy storage solutions. Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In the current study, a composite was synthesized by combining MoS2 with reduced graphene oxide (rGO) under optimal conditions and characterized using various techniques, including XRD, FTIR, SEM and XPS. The electrochemical properties of the composite material were assessed through cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The supercapacitor device demonstrated a specific capacitance of 153 F g-1 at a current density of 1 Ag-1, achieving an excellent energy density of 30.5 Wh kg-1 and a power density of 600 W kg-1. Additionally, it maintained excellent cyclic stability over 5000 cycles, establishing it as a promising candidate for efficient and durable energy storage solutions. These findings highlight the dynamic relationship between electrode materials and offer valuable insights for the development and enhancement of high-performance symmetric devices.

Keywords: 2D material, energy density, galvanostatic charge-discharge, hydrothermal reactor, specific capacitance

Procedia PDF Downloads 17
1362 Inhouse Inhibitor for Mitigating Corrosion in the Algerian Oil and Gas Industry

Authors: Hadjer Didouh, Mohamed Hadj Meliani, Izzeddine Sameut Bouhaik

Abstract:

As global demand for natural gas intensifies, Algeria is increasing its production to meet this rising need, placing significant strain on the nation's extensive pipeline infrastructure. Sonatrach, Algeria's national oil and gas company, faces persistent challenges from metal corrosion, particularly microbiologically influenced corrosion (MIC), leading to substantial economic losses. This study investigates the corrosion-inhibiting properties of Calotropis procera extracts, known as karanka, as a sustainable alternative to conventional inhibitors, which often pose environmental risks. The Calotropis procera extracts were evaluated for their efficacy on carbon steel API 5L X52 through electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), under simulated operational conditions at varying concentrations, particularly at 10%, and elevated temperatures up to 60°C. The results demonstrated remarkable inhibition efficiency, achieving 96.73% at 60°C, attributed to the formation of a stable protective film on the metal surface that suppressed anodic and cathodic corrosion reactions. Scanning electron microscopy (SEM) confirmed the stability and adherence of these protective films, while EIS analysis indicated a significant increase in charge transfer resistance, highlighting the extract's effectiveness in enhancing corrosion resistance. The abundant availability of Calotropis procera in Algeria and its low-cost extraction processes present a promising opportunity for sustainable biocorrosion management strategies in the oil and gas industry, reinforcing the potential of plant-based extracts as viable alternatives to synthetic inhibitors for environmentally friendly corrosion control.

Keywords: corrosion inhibition, calotropis procera, microbiologically influenced corrosion, eco-friendly inhibitor

Procedia PDF Downloads 27
1361 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: condition monitoring, dual flow nozzles, flow equation, operation data

Procedia PDF Downloads 266
1360 Electrochemistry and Performance of Bryophylum pinnatum Leaf (BPL) Electrochemical Cell

Authors: M. A. Mamun, M. I. Khan, M. H. Sarker, K. A. Khan, M. Shajahan

Abstract:

The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter), etc. The AAS, UV-Vis, and pH-metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as the oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of the equilibrium constant (K) implies the big change in Gibbs free energy (∆G), the more electromotive force works in electron transfer during the forward electrochemical reaction which coincides with the fast reduction of the weight of zinc plate, revealed the additional electrical work in the presence of PKL sap. This easily fabricated high-performance PKL battery can show an excellent promise during the off-peak across the countryside.

Keywords: Atomic Absorption Spectrophotometer (AAS), Bryophylum Pinnatum Leaf (BPL), electricity, electrochemistry, organic acids

Procedia PDF Downloads 326
1359 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 132
1358 Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations

Authors: Azam Zare

Abstract:

Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner.

Keywords: flow control, POD, Galerkin projection, separation

Procedia PDF Downloads 154
1357 Optimization of Bio-Diesel Production from Rubber Seed Oils

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation.

Keywords: biodiesel, reactive distillation, rubber seed oil, transesterification

Procedia PDF Downloads 351
1356 Demulsification of Oil from Produced water Using Fibrous Coalescer

Authors: Nutcha Thianbut

Abstract:

In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.

Keywords: produced water, fiber, surface modification, coalescer

Procedia PDF Downloads 166
1355 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 429
1354 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 168
1353 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 234
1352 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 231