Search results for: complex non-linear partial differential equations
9221 Interest Rate Prediction with Taylor Rule
Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou
Abstract:
This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).
Procedia PDF Downloads 5279220 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method
Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand
Abstract:
The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45
Procedia PDF Downloads 3539219 Duality in Multiobjective Nonlinear Programming under Generalized Second Order (F, b, φ, ρ, θ)− Univex Functions
Authors: Meraj Ali Khan, Falleh R. Al-Solamy
Abstract:
In the present paper, second order duality for multiobjective nonlinear programming are investigated under the second order generalized (F, b, φ, ρ, θ)− univex functions. The weak, strong and converse duality theorems are proved. Further, we also illustrated an example of (F, b, φ, ρ, θ)− univex functions. Results obtained in this paper extend some previously known results of multiobjective nonlinear programming in the literature.Keywords: duality, multiobjective programming, univex functions, univex
Procedia PDF Downloads 3549218 Effect of Corrugating Bottom Surface on Natural Convection in a Square Porous Enclosure
Authors: Khedidja Bouhadef, Imene Said Kouadri, Omar Rahli
Abstract:
In this paper numerical investigation is performed to analyze natural convection heat transfer characteristics within a wavy-wall enclosure filled with fluid-saturated porous medium. The bottom wall which has the wavy geometry is maintained at a constant high temperature, while the top wall is straight and is maintained at a constant lower temperature. The left and right walls of the enclosure are both straight and insulated. The governing differential equations are solved by Finite-volume approach and grid generation is used to transform the physical complex domain to a computational regular space. The aim is to examine flow field, temperature distribution and heat transfer evolutions inside the cavity when Darcy number, Rayleigh number and undulations number values are varied. The results mainly indicate that the heat transfer is rather affected by the permeability and Rayleigh number values since increasing these values enhance the Nusselt number; although the exchanges are not highly affected by the undulations number.Keywords: grid generation, natural convection, porous medium, wavy wall enclosure
Procedia PDF Downloads 2649217 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 3309216 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation
Authors: Sarun Phibanchon, Yuttakarn Rattanachai
Abstract:
The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.Keywords: soliton, ion-acoustic waves, plasma, spectral method
Procedia PDF Downloads 4119215 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller
Procedia PDF Downloads 5489214 A Semidefinite Model to Quantify Dynamic Forces in the Powertrain of Torque Regulated Bascule Bridge Machineries
Authors: Kodo Sektani, Apostolos Tsouvalas, Andrei Metrikine
Abstract:
The reassessment of existing movable bridges in The Netherlands has created the need for acceptance/rejection criteria to assess whether the machineries are meet certain design demands. However, the existing design code defines a different limit state design, meant for new machineries which is based on a simple linear spring-mass model. Observations show that existing bridges do not confirm the model predictions. In fact, movable bridges are nonlinear systems consisting of mechanical components, such as, gears, electric motors and brakes. Next to that, each movable bridge is characterized by a unique set of parameters. However, in the existing code various variables that describe the physical characteristics of the bridge are neglected or replaced by partial factors. For instance, the damping ratio ζ, which is different for drawbridges compared to bascule bridges, is taken as a constant for all bridge types. In this paper, a model is developed that overcomes some of the limitations of existing modelling approaches to capture the dynamics of the powertrain of a class of bridge machineries First, a semidefinite dynamic model is proposed, which accounts for stiffness, damping, and some additional variables of the physical system, which are neglected by the code, such as nonlinear braking torques. The model gives an upper bound of the peak forces/torques occurring in the powertrain during emergency braking. Second, a discrete nonlinear dynamic model is discussed, with realistic motor torque characteristics during normal operation. This model succeeds to accurately predict the full time history of the occurred stress state of the opening and closing cycle for fatigue purposes.Keywords: Dynamics of movable bridges, Bridge machinery, Powertrains, Torque measurements
Procedia PDF Downloads 1569213 Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations
Authors: A. Zerarka, W. Djoudi
Abstract:
We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions.Keywords: fractional transformations, nonlinear equation, travelling wave solutions, lattice equation
Procedia PDF Downloads 6579212 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics
Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih
Abstract:
Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability
Procedia PDF Downloads 1589211 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band
Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov
Abstract:
This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization
Procedia PDF Downloads 1589210 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 5119209 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian
Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma
Abstract:
In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental
Procedia PDF Downloads 2099208 Worst-Case Load Shedding in Electric Power Networks
Authors: Fu Lin
Abstract:
We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis
Procedia PDF Downloads 1419207 Vibration Analysis of Power Lines with Moving Dampers
Authors: Mohammad Bukhari, Oumar Barry
Abstract:
In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies.Keywords: absorber performance, Aeolian vibration, Hamilton’s principle, stockbridge damper
Procedia PDF Downloads 2709206 The Role of the Elastic Foundation Having Nonlinear Stiffness Properties in the Vibration of Structures
Authors: E. Feulefack Songong, A. Zingoni
Abstract:
A vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Although vibrations can be linear or nonlinear depending on the basic components of the system, the interest is mostly pointed towards nonlinear vibrations. This is because most structures around us are to some extent nonlinear and also because we need more accurate values in an analysis. The goal of this research is the integration of nonlinearities in the development and validation of structural models and to ameliorate the resistance of structures when subjected to loads. Although there exist many types of nonlinearities, this thesis will mostly focus on the vibration of free and undamped systems incorporating nonlinearity due to stiffness. Nonlinear stiffness has been a concern to many engineers in general and Civil engineers in particular because it is an important factor that can bring a good modification and amelioration to the response of structures when subjected to loads. The analysis of systems will be done analytically and then numerically to validate the analytical results. We will first show the benefit and importance of stiffness nonlinearity when it is implemented in the structure. Secondly, We will show how its integration in the structure can improve not only the structure’s performance but also its response when subjected to loads. The results of this study will be valuable to practicing engineers as well as industry practitioners in developing better designs and tools for their structures and mechanical devices. They will also serve to engineers to design lighter and stronger structures and to give good predictions as for the behavior of structures when subjected to external loads.Keywords: elastic foundation, nonlinear, plates, stiffness, structures, vibration
Procedia PDF Downloads 1369205 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study
Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu
Abstract:
Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score
Procedia PDF Downloads 4659204 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4289203 Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process
Authors: Adnan Alhathal Alanezi, Alanood A. Alsarayreh
Abstract:
A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically.Keywords: direct contact membrane distillation, membrane inclination angle, heat and mass transfer, reynolds number
Procedia PDF Downloads 1219202 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin
Procedia PDF Downloads 4449201 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir
Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede
Abstract:
Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution
Procedia PDF Downloads 1379200 On Radially Symmetric Vibrations of Bi-Directional Functionally Graded Circular Plates on the Basis of Mindlin’s Theory and Neutral Axis
Authors: Rahul Saini, Roshan Lal
Abstract:
The present paper deals with the free axisymmetric vibrations of bi-directional functionally graded circular plates using Mindlin’s plate theory and physical neutral surface. The temperature-dependent, as well as temperature-independent mechanical properties of the plate material, varies in radial and transverse directions. Also, temperature profile for one- and two-dimensional temperature variations has been obtained from the heat conduction equation. A simple computational formulation for the governing differential equation of motion for such a plate model has been derived using Hamilton's principle for the clamped and simply supported plates at the periphery. Employing the generalized differential quadrature method, the corresponding frequency equations have been obtained and solved numerically to retain their lowest three roots as the natural frequencies for the first three modes. The effect of various other parameters such as temperature profile, functionally graded indices, and boundary conditions on the vibration characteristics has been presented. In order to validate the accuracy and efficiency of the method, the results have been compared with those available in the literature.Keywords: bi-directionally FG, GDQM, Mindlin’s circular plate, neutral axis, vibrations
Procedia PDF Downloads 1319199 Numerical Study on the Ultimate Load of Offshore Two-Planar Tubular KK-Joints at Fire-Induced Elevated Temperatures
Authors: Hamid Ahmadi, Neda Azari-Dodaran
Abstract:
A total of 270 nonlinear steady-state finite element (FE) analyses were performed on 54 FE models of two-planar circular hollow section (CHS) KK-joints subjected to axial loading at five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). The primary goal was to investigate the effects of temperature and geometrical characteristics on the ultimate strength, modes of failure, and initial stiffness of the KK-joints. Results indicated that on an average basis, the ultimate load of a two-planar tubular KK-joint at 200 ºC, 400 ºC, 550 ºC, and 700 ºC is 90%, 75%, 45%, and 16% of the joint’s ultimate load at ambient temperature, respectively. Outcomes of the parametric study showed that replacing the yield stress at ambient temperature with the corresponding value at elevated temperature to apply the EN 1993-1-8 equations for the calculation of the joint’s ultimate load at elevated temperatures may lead to highly unconservative results that might endanger the safety of the structure. Results of the parametric study were then used to develop a set of design formulas, through nonlinear regression analyses, to calculate the ultimate load of two-planar tubular KK-joints subjected to axial loading at elevated temperatures.Keywords: ultimate load, two-planar tubular KK-joint, axial loading, elevated temperature, parametric equation
Procedia PDF Downloads 1599198 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5849197 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles
Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma
Abstract:
Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity
Procedia PDF Downloads 1229196 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis
Authors: Alireza Abbasi Moshaii, Shaghayegh Nasiri, Mehdi Tale Masouleh
Abstract:
The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.Keywords: robotic, static analysis, 3-RCC, 3-RRS
Procedia PDF Downloads 3859195 Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems
Authors: Ali Afaghi, Sehraneh Ghaemi
Abstract:
The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications.Keywords: fractional-order multi-agent systems, leader-following consensus, nonlinear dynamics, directed graphs
Procedia PDF Downloads 3999194 Numerical Study of Trailing Edge Serrations on a Wells Turbine
Authors: Abdullah S. AlKhalifa, Mohammad Nasim Uddin, Michael Atkinson
Abstract:
The primary objective of this investigation is to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight blades with NACA 0015 airfoils. The blade chord length was 0.125 m, and the span was 0.100 m. Two modified NACA 0015 serrated configurations were studied: 1) full-span and 2) partial span serrations covering the trailing edge from hub to tip. Numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine to the baseline was made by comparing non-dimensional parameters of torque coefficient, pressure drop coefficient, and turbine efficiency. A comparison of the surface limiting streamlines was performed to analyze the flow topology of the turbine blades. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, the average efficiency increased across the range of simulated flow coefficients.Keywords: renewable energy, trailing edge serrations, Wells turbine, partial serration
Procedia PDF Downloads 1019193 Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide
Authors: Ali Ballouch, Nourelhouda Choukri, Zouhair Soufiani, Mohamed El Jouad, Mohamed Addou
Abstract:
For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature.Keywords: ZnO, characterization, non-linear optical properties, optoelectronics
Procedia PDF Downloads 4839192 Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities
Authors: Shahroz Khan, Osman Taha Şen
Abstract:
In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain.Keywords: contact force, nonlinearities, brake squeal, vehicle brake
Procedia PDF Downloads 246