Search results for: big data interpretation
25198 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming
Authors: Milind Chaudhari, Suhail Balasinor
Abstract:
Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.Keywords: big data, IoT, vertical farming, indoor farming
Procedia PDF Downloads 17525197 The Real Consignee: An Exploratory Study of the True Party who is Entitled to Receive Cargo under Bill of Lading
Authors: Mojtaba Eshraghi Arani
Abstract:
According to the international conventions for the carriage of goods by sea, the consignee is the person who is entitled to take delivery of the cargo from the carrier. Such a person is usually named in the relevant box of the bill of lading unless the latter is issued “To Order” or “To Bearer”. However, there are some cases in which the apparent consignee, as above, was not intended to take delivery of cargo, like the L/C issuing bank or the freight forwarder who are named as consignee only for the purpose of security or acceleration of transit process. In such cases as well as the BL which is issued “To Order”, the so-called “real consignee” can be found out in the “Notify Party” box. The dispute revolves around the choice between apparent consignee and real consignee for being entitled not only to take delivery of the cargo but also to sue the carrier for any damages or loss. While it is a generally accepted rule that only the apparent consignee shall be vested with such rights, some courts like France’s Cour de Cassation have declared that the “Notify Party”, as the real consignee, was entitled to sue the carrier and in some cases, the same court went far beyond and permitted the real consignee to take suit even where he was not mentioned on the BL as a “Notify Party”. The main argument behind such reasoning is that the real consignee is the person who suffered the loss and thus had a legitimate interest in bringing action; of course, the real consignee must prove that he incurred a loss. It is undeniable that the above-mentioned approach is contrary to the position of the international conventions on the express definition of consignee. However, international practice has permitted the use of BL in a different way to meet the business requirements of banks, freight forwarders, etc. Thus, the issue is one of striking a balance between the international conventions on the one hand and existing practices on the other hand. While the latest convention applicable for sea transportation, i.e., the Rotterdam Rules, dealt with the comparable issue of “shipper” and “documentary shipper”, it failed to cope with the matter being discussed. So a new study is required to propose the best solution for amending the current conventions for carriage of goods by sea. A qualitative method with the concept of interpretation of data collection has been used in this article. The source of the data is the analysis of domestic and international regulations and cases. It is argued in this manuscript that the judge is not allowed to recognize any one as real consignee, other than the person who is mentioned in the “Consingee” box unless the BL is issued “To Order” or “To Bearer”. Moreover, the contract of carriage is independent of the sale contract and thus, the consignee must be determined solely based on the facts of the BL itself, like “Notify Party” and not any other contract or document.Keywords: real consignee, cargo, delivery, to order, notify the party
Procedia PDF Downloads 7925196 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt
Authors: A. Anis, W. Bekheet, A. El Hakim
Abstract:
Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.Keywords: road safety management system, road crash, road fatality, road injury
Procedia PDF Downloads 14825195 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 37425194 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 49025193 Demystifying the Legitimacy of the International Court of Justice
Authors: Roger-Claude Liwanga
Abstract:
Over the last seven decades, there has been a proliferation of international tribunals. Yet, they have not received unanimous approval, raising a question about their legitimacy. A legitimate international tribunal is one whose authority to adjudicate international disputes is perceived as justified. Using the case study of the International Court of Justice (ICJ), this article highlights the three criteria that should be considered in assessing the legitimacy of an international tribunal, which include legal, sociological, and moral elements. It also contends that the ICJ cannot claim 'full' legitimacy if any of these components of legitimacy is missing in its decisions. The article further suggests that the legitimacy of the ICJ has a dynamic nature, as litigating parties may constantly change their perception of the court’s authority at any time before, during, or after the judicial process. The article equally describes other factors that can contribute to maintaining the international court’s legitimacy, including fairness and unbiasedness, sound interpretation of international legal norms, and transparency.Keywords: international tribunals, legitimacy, human rights, international law
Procedia PDF Downloads 37725192 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 30825191 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors
Authors: Jing Yuan, Hongwei Yang
Abstract:
This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel
Procedia PDF Downloads 33625190 Quality of Life Assessment across the Cancer Continuum: Understanding the Role of an Exercise Rehabilitation Programme
Authors: Bernat-Carles Serdà Ferrer, Arantza Del Valle Gómez
Abstract:
The Quality of Life (QoL) paradigm is multidimensional, dynamic and modular and its definition differs across the cancer continuum. The challenge in the interpretation of QoL data in clinical research is that QoL is influenced by psychological phenomena such as adaptation to illness. This research aims to obtain a valid and sensitive assessment of QoL change over the continuum disease, and to evaluate a rehabilitation programme aimed at inverting the observed decrease in QoL when patients return to daily living activities. The sample comprised 66 men. Patients were first assessed to establish a baseline (P1-diagnosis). This was followed by a post-test (P2-discharge) and a then-test measurement (P3-retrospective evaluation) and after returning home patients were randomized in experimental and control groups. The experimental group attended a rehabilitation programme over 24 weeks (P4). Results show that from baseline to post-test, QoL decreased significantly. The recalibration then-test confirmed a low QoL in all periods evaluated. Significant differences between the experimental and control groups prove the positive effect of the Exercise Rehabilitation Programme (ERP) on QoL. Understanding the real dynamic of QoL over time would help to adapt rehabilitation programmes by improving sensitivity and efficacy and provide professionals with a more accurate perception of the impact of treatment and side effects on patients’ QoL. Our results underline the importance of changing the approach adopted by health professionals towards one of watchful waiting on patients’ QoL until their complete recovery in daily life.Keywords: exercise, prostate cancer, quality of life, rehabilitation programme, response shift
Procedia PDF Downloads 16725189 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40425188 An Empirical Study of the Impacts of Big Data on Firm Performance
Authors: Thuan Nguyen
Abstract:
In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient
Procedia PDF Downloads 24525187 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 40525186 Gravity Due to the Expansion of Matter and Distortion of Hyperspace
Authors: Arif Ali, Divya Raj Sapkota
Abstract:
In this paper, we explain gravitational attraction as the consequence of the dynamics of four-dimensional bodies and the consequent distortion of space. This approach provides an alternative direction to understand various physical phenomena based on the existence of the fourth spatial dimension. For this interpretation, we formulate the acceleration due to gravity and orbital velocity based on the accelerating expansion of three-dimensional symmetric bodies. It is also shown how distortion in space caused by the dynamics of four-dimensional bodies counterbalances the effect of expansion. We find that the motion of four-dimensional bodies through four-dimensional space leads to gravitational attraction, and the expansion of bodies leads to surface gravity. Thus, dynamics in the fourth spatial dimension provide an alternative explanation to gravity.Keywords: dimensions, four, gravity, voluceleration
Procedia PDF Downloads 10025185 Assessing the Empowerment of Muslim Women in Malawi: A Case Study of the Muslim Women's Organization
Authors: Ulemu Maseko
Abstract:
This study critically examines the empowerment of Muslim women in Malawi, focusing on the Muslim Women’s Organization (MWO) and its impact on gender equality within Islamic communities. It explores MWO's interpretation of Islamic women's rights, the stereotypes Muslim women face, and the factors limiting their rights. Utilizing qualitative methods, including interviews, focus groups, and participant observations, the research adopts phenomenological and feminist frameworks. Findings indicate that since its establishment in 1985, MWO has significantly advocated for gender equality by leveraging Islamic teachings and policy to support women’s empowerment, enabling Muslim women to participate in social change. However, entrenched cultural traditions, patriarchal structures, and systemic poverty remain barriers to empowerment.Keywords: Islam, women empowerment, Malawi, Islamic feminism
Procedia PDF Downloads 3325184 The Perspective on Data Collection Instruments for Younger Learners
Authors: Hatice Kübra Koç
Abstract:
For academia, collecting reliable and valid data is one of the most significant issues for researchers. However, it is not the same procedure for all different target groups; meanwhile, during data collection from teenagers, young adults, or adults, researchers can use common data collection tools such as questionnaires, interviews, and semi-structured interviews; yet, for young learners and very young ones, these reliable and valid data collection tools cannot be easily designed or applied by the researchers. In this study, firstly, common data collection tools are examined for ‘very young’ and ‘young learners’ participant groups since it is thought that the quality and efficiency of an academic study is mainly based on its valid and correct data collection and data analysis procedure. Secondly, two different data collection instruments for very young and young learners are stated as discussing the efficacy of them. Finally, a suggested data collection tool – a performance-based questionnaire- which is specifically developed for ‘very young’ and ‘young learners’ participant groups in the field of teaching English to young learners as a foreign language is presented in this current study. The designing procedure and suggested items/factors for the suggested data collection tool are accordingly revealed at the end of the study to help researchers have studied with young and very learners.Keywords: data collection instruments, performance-based questionnaire, young learners, very young learners
Procedia PDF Downloads 9325183 Application of Artificial Intelligence in EOR
Authors: Masoumeh Mofarrah, Amir NahanMoghadam
Abstract:
Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.Keywords: artificial intelligence, EOR, neural networks, expert systems
Procedia PDF Downloads 48825182 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 3325181 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India
Authors: Bharti Singh, Shri K. Singh
Abstract:
Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.Keywords: child nutrition, India, NFHS, women’s empowerment
Procedia PDF Downloads 3325180 Generation of Quasi-Measurement Data for On-Line Process Data Analysis
Authors: Hyun-Woo Cho
Abstract:
For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.Keywords: data analysis, diagnosis, monitoring, process data, quality control
Procedia PDF Downloads 48225179 Congruency of English Teachers’ Assessments Vis-à-Vis 21st Century Skills Assessment Standards
Authors: Mary Jane Suarez
Abstract:
A massive educational overhaul has taken place at the onset of the 21st century addressing the mismatches of employability skills with that of scholastic skills taught in schools. For a community to thrive in an ever-developing economy, the teaching of the necessary skills for job competencies should be realized by every educational institution. However, in harnessing 21st-century skills amongst learners, teachers, who often lack familiarity and thorough insights into the emerging 21st-century skills, are chained with the restraint of the need to comprehend the physiognomies of 21st-century skills learning and the requisite to implement the tenets of 21st-century skills teaching. With the endeavor to espouse 21st-century skills learning and teaching, a United States-based national coalition called Partnership 21st Century Skills (P21) has identified the four most important skills in 21st-century learning: critical thinking, communication, collaboration, and creativity and innovation with an established framework for 21st-century skills standards. Assessment of skills is the lifeblood of every teaching and learning encounter. It is correspondingly crucial to look at the 21st century standards and the assessment guides recognized by P21 to ensure that learners are 21st century ready. This mixed-method study sought to discover and describe what classroom assessments were used by English teachers in a public secondary school in the Philippines with course offerings on science, technology, engineering, and mathematics (STEM). The research evaluated the assessment tools implemented by English teachers and how these assessment tools were congruent to the 21st assessment standards of P21. A convergent parallel design was used to analyze assessment tools and practices in four phases. In the data-gathering phase, survey questionnaires, document reviews, interviews, and classroom observations were used to gather quantitative and qualitative data simultaneously, and how assessment tools and practices were consistent with the P21 framework with the four Cs as its foci. In the analysis phase, the data were treated using mean, frequency, and percentage. In the merging and interpretation phases, a side-by-side comparison was used to identify convergent and divergent aspects of the results. In conclusion, the results yielded assessments tools and practices that were inconsistent, if not at all, used by teachers. Findings showed that there were inconsistencies in implementing authentic assessments, there was a scarcity of using a rubric to critically assess 21st skills in both language and literature subjects, there were incongruencies in using portfolio and self-reflective assessments, there was an exclusion of intercultural aspects in assessing the four Cs and the lack of integrating collaboration in formative and summative assessments. As a recommendation, a harmonized assessment scheme of P21 skills was fashioned for teachers to plan, implement, and monitor classroom assessments of 21st-century skills, ensuring the alignment of such assessments to P21 standards for the furtherance of the institution’s thrust to effectively integrate 21st-century skills assessment standards to its curricula.Keywords: 21st-century skills, 21st-century skills assessments, assessment standards, congruency, four Cs
Procedia PDF Downloads 19325178 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 9525177 The Effects of Pride Therapy on the Level of Self-Esteem among Physically Challenged Adolescents
Authors: Canapi Patricia Joy, Canlas Tracy Gabriella, Canseco Teresa, Capistrano Reena Marie, Carandang Vernon, Carbonel Khiara Claudine
Abstract:
Research problem: The main problem of the study was to determine the effect of Projecting the Reflection of the Individual’s Self-esteem (PRIDE) therapy on the level of self-esteem of physically challenged adolescents. Objectives of the Study: The study determined the effect of PRIDE (Projecting the Reflection of the Individuals Self-esteem) therapy on the level of self-esteem among physically challenged adolescents. Methodology: A quasi-experimental study was used which involved 30 randomly-assigned subjects, 15 in the experimental group and 15 in the control group. The Projecting the reflection of the Individuals’ Self-Esteem (PRDIE) therapy was administered to the experimental group. The researchers utilized the Sorensen Self-Esteem test tool as a pretest and posttest questionnaire and yielded a Cronbach’s alpha of .912. Paired T-test was used to analyze the gathered data. Results: The results showed that after the administration of PRIDE therapy, there was an increase on the level of self-esteem. The experimental group had a value of 3.590, which was significant and meant that the level of self-esteem is significantly increased. On the other hand, the control group, had a value of -2.207 which was also significant, therefore, the level of self esteem significantly decreased. Conclusion: the PRIDE Therapy is effective in increasing the level of self-esteem among physically challenged adolescent. Recommendations: The researchers recommend the use of PRIDE Therapy as an intervention in handling physically challenged patients, especially adolescents, in order to enhance their self-esteem. Also, the researchers recommend that nursing students be informed on the efficacy of PRIDE Therapy in enhancing the self-esteem of physically challenged patients. Furthermore, the inclusion of a psychologist during the implementation of PRIDE Therapy, specifically art therapy, to be able to have a more focused interpretation of the drawings and really be able to see the projection of their self-esteem is also recommended.Keywords: adolescents, PRIDE therapy, physically challenged, self-esteem
Procedia PDF Downloads 31125176 Using Equipment Telemetry Data for Condition-Based maintenance decisions
Authors: John Q. Todd
Abstract:
Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.Keywords: condition based maintenance, equipment data, metrics, alerts
Procedia PDF Downloads 18825175 Comparing Russian and American Students’ Metaphorical Competence
Authors: Svetlana L. Mishlanova, Evgeniia V. Ermakova, Mariia E. Timirkina
Abstract:
The paper is concerned with the study of metaphor production in essays written by Russian and English native speakers in the framework of cognitive metaphor theory. It considers metaphorical competence as individual’s ability to recognize, understand and use metaphors in speech. The work analyzes the influence of visual metaphor on production and density of conventional and novel verbal metaphors. The main methods of research include experiment connected with image interpretation, metaphor identification procedure (MIPVU) and visual conventional metaphors identification procedure proposed by VisMet group. The research findings will be used in the project aimed at comparing metaphorical competence of native and non-native English speakers.Keywords: metaphor, metaphorical competence, conventional, novel
Procedia PDF Downloads 28625174 Ethics Can Enable Open Source Data Research
Authors: Dragana Calic
Abstract:
The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions
Procedia PDF Downloads 28425173 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 3325172 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46525171 Literature and the Extremism: Case Study on and Qualitative Analysis of the Impact of Literature on Extremism in Afghanistan
Authors: Mohibullah Zegham
Abstract:
In conducting a case study to analyze the impact of literature on extremism and fundamentalism in Afghanistan, the author of this paper uses qualitative research method. For this purpose the author of the paper has a glance at the history of extremism and fundamentalism in Afghanistan, as well the major causes and predisposing factors of it; then analyzes the impact of literature on extremism and fundamentalism using qualitative method. This study relies on the moral engagement theory to reveal how some extreme-Islamists quit the ideological interpretation of Islam and return to normal life by reading certain literary works. The goal of this case study is to help fighting extremism and fundamentalism by using literature. The research showed that literary works are useful in this regard and there are several evidences of its effectiveness.Keywords: extremism, fundamentalism, communist, jihad, madrasa, literature
Procedia PDF Downloads 27425170 Innovations in the Lithium Chain Value
Authors: Fiúza A., Góis J. Leite M., Braga H., Lima A., Jorge P., Moutela P., Martins L., Futuro A.
Abstract:
Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques are used to minimize the laboratory effort required by conventional approaches and also allow phenomenological comprehension.Keywords: artificial intelligence, tailings free process, ferroelectric electrolyte battery, life cycle assessment
Procedia PDF Downloads 12225169 Hydro-Climatological, Geological, Hydrogeological and Geochemical Study of the Coastal Aquifer System of Chiba Watershed (Cape Bon Peninsula)
Authors: Khawla Askri, Mohamed Haythem Msaddek, AbdelAziz Sebei
Abstract:
Climate change combined with the increase in anthropogenic activities will affect coastal groundwater systems around the world and, more particularly, the Cap Bon region in the North East of Tunisia. This study aims to study the impact of climate change and human stress on the salinization and quantification of groundwater in the Wadi Chiba watershed. In this regard, a hydro-climatological study and a hydrogeological study were carried out based on the characterization of the aquifer system of the eastern coast at the level of the watershed of Wadi Chiba in order to seek to identify, first of all, the degradation of the state of the aquifer on the quantitative level by the study of the piezometric and its evolution over time. Secondly, we sought to identify the degradation of the state of the aquifer qualitatively by using the geochemical method, in particular the major elements, to assess the mineralization of the aquifer water and understand its hydrogeochemical functioning. The study of the Na + / Cl- and Ca2 + / Mg2 + chemical relationships confirmed the presence of a marine intrusion downstream of the Wadi Chiba watershed northeast of Cap-Bon accompanied by a piezometric depression. For this purpose, we proceeded to: 1) Mapping of both piezometric data and salinity. 2) The interpretation of the mapping results. 3)Identification of the origin of the localized deterioration in the quality of the aquifer water. Finally, the analysis of the results showed that the scarcity of water is already forcing human actions in the Chiba watershed due to the irrigation of agricultural lands and the overexploitation of the water table in the study area.Keywords: climate change, human activities, water table, Wadi Chiba watershed, piezometric depression, marine intrusion
Procedia PDF Downloads 92