Search results for: bed friction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 747

Search results for: bed friction

147 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles

Authors: Kbab H, Hamitouche T

Abstract:

In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.

Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR

Procedia PDF Downloads 133
146 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 271
145 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit

Authors: James Killian, Sarah Cox

Abstract:

The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.

Keywords: FOS, SRF, LEM, comparison

Procedia PDF Downloads 308
144 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization

Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang

Abstract:

The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.

Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling

Procedia PDF Downloads 254
143 Chemical Reaction, Heat and Mass Transfer on Unsteady MHD Flow along a Vertical Stretching Sheet with Heat Generation/Absorption and Variable Viscosity

Authors: Jatindra Lahkar

Abstract:

The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer along a vertical unsteady stretching sheet is investigated, in the presence of heat generation/absorption with variable viscosity and viscous dissipation. The governing non-linear partial differential equations are reduced to ordinary differential equations using similarity transformation and solved numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various flow parameters on the velocity, temperature and concentration distributions are analyzed and presented graphically. Skin-friction coefficient, Nusselt number and Sherwood number are derived at the sheet. It is observed that the influence of chemical reaction, the fluid flow along the sheet accelerate with the increase of chemical reaction parameter, on the other hand, temperature of the fluid increases with increase of chemical reaction parameter but concentration of the fluid reduces with it. The boundary layer decreases on the surface of the sheet for all values of unsteadiness parameter, increasing values of the chemical reaction parameter. The increases in the values of Sc cause the species concentration and its boundary layer thickness to decrease resulting in less induced flow and higher fluid temperatures. This is depicted in the decreases in the velocity and species concentration and increases in the fluid temperature as Sc increases.

Keywords: chemical reaction, heat generation/absorption, magnetic number, unsteadiness, variable viscosity

Procedia PDF Downloads 307
142 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis

Authors: Younes Abed

Abstract:

The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.

Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure

Procedia PDF Downloads 292
141 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils

Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh

Abstract:

Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.

Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process

Procedia PDF Downloads 74
140 Galtung’s Violence Triangle: We Need to Be Thinking Upside Down

Authors: Michael Fusi Ligaliga

Abstract:

Peace and Conflict Studies (PACS), despite being a new pedagogical discipline, is a growing interdisciplinary academic field that has expanded its presence from the traditional lens of war, conflict, and violence to addressing various social issues impacting society. Family and domestic violence (FDV) has seldom been explored through the PACS lens despite some studies showing that “on average, nearly 20 people per minute are physically abused by an intimate partner in the United States. Over one year, this equates to more than 10 million women and men.” In the Pacific, FDV rates are some of the highest in the world. The friction caused by cultural practices reinforcing patriarchy and male impunity, compounded by historical colonial experiences, as well as the impact of Christianity on the Pacific region, creates a complex social landscape when thinking about and addressing FDV in the Pacific. This paper seeks to re-examine Johan Galtung’s violence triangle (GVT) theory and its application to understanding FDV in the Pacific. Galtung argues that there are three forms of violence – direct, structural, and cultural. Direct violence (DV) is behaviors that threaten life itself or diminishes the ability of a person to meet his or her basic needs. This form of violence is visible because it is manifested in behaviors such as killing, maiming, sexual assault, etc. Structural violence (SV) exists when people do not get equal access to goods and services (health, education, justice) that enable them to reach their full potential. When ideologies embedded in cultural norms and practices are used to justify and advocate acts of violence by shifting the moral parameters from being wrong to right or acceptable, this, according to Galtung, is referred to as Cultural violence (CV).

Keywords: direct violence, cultural violence, structural violence, indigenous peacebuilding, samoa

Procedia PDF Downloads 77
139 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 146
138 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 65
137 Design and Manufacture of a Hybrid Gearbox Reducer System

Authors: Ahmed Mozamel, Kemal Yildizli

Abstract:

Due to mechanical energy losses and a competitive of minimizing these losses and increases the machine efficiency, the need for contactless gearing system has raised. In this work, one stage of mechanical planetary gear transmission system integrated with one stage of magnetic planetary gear system is designed as a two-stage hybrid gearbox system. The permanent magnets internal energy in the form of the magnetic field is used to create meshing between contactless magnetic rotors in order to provide self-system protection against overloading and decrease the mechanical loss of the transmission system by eliminating the friction losses. Classical methods, such as analytical, tabular method and the theory of elasticity are used to calculate the planetary gear design parameters. The finite element method (ANSYS Maxwell) is used to predict the behaviors of a magnetic gearing system. The concentric magnetic gearing system has been modeled and analyzed by using 2D finite element method (ANSYS Maxwell). In addition to that, design and manufacturing processes of prototype components (a planetary gear, concentric magnetic gear, shafts and the bearings selection) of a gearbox system are investigated. The output force, the output moment, the output power and efficiency of the hybrid gearbox system are experimentally evaluated. The viability of applying a magnetic force to transmit mechanical power through a non-contact gearing system is presented. The experimental test results show that the system is capable to operate continuously within the range of speed from 400 rpm to 3000 rpm with the reduction ratio of 2:1 and maximum efficiency of 91%.

Keywords: hybrid gearbox, mechanical gearboxes, magnetic gears, magnetic torque

Procedia PDF Downloads 152
136 The Use of Superplastic Tin-Lead Alloy as A solid Lubricant in Free Upsetting of Aluminum and Brass

Authors: Adnan I. O. Zaid, Hebah B. Melhem, Ahmad Qandil

Abstract:

The main function of a lubricant in any forming process is to reduce friction between the work piece and the die set, hence reducing the force and energy requirement for forming process and to achieve homogeneous deformation. The free upsetting test is an important open forging test. In this paper, super plastic tin-lead alloy is used as solid lubricant in the free upsetting test of non-ferrous metals and compared with eight different lubricants using the following three criteria: one comparing the value of the reduction in height percentages, i.e. the engineering strain, in identical specimens of the same material under the effect of the same compressive force. The second is comparing the amount of barreling produced in each of the identical specimens, at each lubricant. The third criterion is using the specific energy, i.e. the energy per unit volume consumed in forming each material, using the different lubricants to produce the same reduction in height percentage of identical specimens from each of the two materials, namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work namely: aluminum and brass. It was found that the super plastic tin-lead alloy lubricant has produced higher values of reductions in height percentage and less barreling in the two non-ferrous materials, used in this work, under the same compression force among the different used lubricants.

Keywords: aluminum, brass, different lubricants, free upsetting, solid lubricants, superplastic tin-lead alloy

Procedia PDF Downloads 464
135 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 261
134 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure

Authors: B. Hekner, J. Myalski, P. Wrzesniowski

Abstract:

This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.

Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application

Procedia PDF Downloads 118
133 Thin Films of Glassy Carbon Prepared by Cluster Deposition

Authors: Hatem Diaf, Patrice Melinon, Antonio Pereira, Bernard Moine, Nicholas Blanchard, Florent Bourquard, Florence Garrelie, Christophe Donnet

Abstract:

Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist.

Keywords: glassy carbon, cluster deposition, coating, electronic structure

Procedia PDF Downloads 319
132 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory

Procedia PDF Downloads 153
131 Strain Sensing Seams for Monitoring Body Movement

Authors: Sheilla Atieno Odhiambo, Simona Vasile, Alexandra De Raeve, Ann Schwarz

Abstract:

Strain sensing seams have been developed by integrating conductive sewing threads in different types of seams design on a fabric typical for sports clothing using sewing technology. The aim is to have a simple integrated textile strain sensor that can be applied to sports clothing to monitor the movements of the upper body parts of the user during sports. Different types of commercially available sewing threads were used as the bobbin thread in the production of different architectural seam sensors. These conductive sewing threads have been integrated into seams in particular designs using specific seam types. Some of the threads are delicate and needed to be laid into the seam with as little friction as possible and less tension; thus, they could only be sewn in as the bobbin thread and not the needle thread. Stitch type 304; 406; 506; 601;602; 605. were produced. The seams were made on a fabric of 80% polyamide 6.6 and 20% elastane. The seams were cycled(stretch-release-stretch) for five cycles and up to 44 cycles following EN ISO 14704-1: 2005 (modified), using a tensile instrument and the changes in the resistance of the seams with time were recorded using Agilent meter U1273A. Both experiments were conducted simultaneously on the same seam sample. Sensing functionality, among which is sensor gauge and reliability, were evaluated on the promising sensor seams. The results show that the sensor seams made from HC Madeira 40 conductive yarns performed better inseam stitch 304 and 602 compared to the other combination of stitch type and conductive sewing threads. These sensing seams 304, 406 and 602 will further be interconnected to our developed processing and communicating unit and further integrated into a sports clothing prototype that can track body posture. This research is done within the framework of the project SmartSeam.

Keywords: conductive sewing thread, sensing seams, smart seam, sewing technology

Procedia PDF Downloads 190
130 Wear Resistance and Thermal Stability of Tungsten Boride Layers Deposited by Magnetron Sputtering

Authors: Justyna Chrzanowska, Jacek Hoffman, Dariusz Garbiec, Łukasz Kurpaska, Piotr Denis, Tomasz Moscicki, Zygmunt Szymanski

Abstract:

Tungsten and boron compounds belong to the group of superhard materials and its hardness could exceed 40 GPa. In this study, the properties of the tungsten boride (WB) layers deposited in magnetron sputtering process are investigated. The sputtering process occurred from specially prepared targets that were composed of boron and tungsten mixed in molar ratio of 2.5 or 4.5 and sintered in spark plasma sintering process. WB layers were deposited on silicon (100) and stainless steel 304 substrates at room temperature (RT) or in 570 °C. Layers deposited in RT and in elevated temperature varied considerably. Layers deposited in RT are amorphous and have low adhesion. In contrast, the layers deposited in 570 °C are crystalline and have good adhesion. All deposited layers have a hardness about 40 GPa. Moreover, the friction coefficient of crystalline layers is 0.22 and wear rate is about 0.67•10-6 mm3N-1m-1. After material characterization the WB layers were annealed in argon atmosphere in 1000 °C for 1 hour. On the basis of X-Ray Diffraction analysis, it has been noted that the crystalline layers are thermally stable and do not change their phase composition, whereas the amorphous layers change their phase composition. Moreover, after annealing, on the surface of WB layers some cracks were observed. It is probably connected with the differences of the thermal expansion between the layer and the substrate. Despite of the presence of cracks, the wear resistance of annealed layers is still higher than the wear resistance of uncoated substrate. The analysis of the structure and properties of tungsten boride layers lead to the discussion about the application area of this material.

Keywords: hard coatings, hard materials, magnetron sputtering, mechanical properties, tungsten boride

Procedia PDF Downloads 289
129 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power

Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina

Abstract:

Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.

Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics

Procedia PDF Downloads 222
128 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling

Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines

Abstract:

The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.

Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances

Procedia PDF Downloads 155
127 Flooring Solution for Sports Courts Such as Ecological Mortar

Authors: Helida T. G. Soares, Antonio J. P. da Silva

Abstract:

As the society develops, the accumulation of solid waste in landfills, in the environment, and the depletion of the raw material increases. In this way, there is relevance in researching the interaction between the environmental management and civil construction; therefore, this project has for scope the analysis and the effects of the rubber microparticles use as a small aggregate added to the sand, producing an ecological mortar for the pavement constitution, from the mixture of a paste, composed of Portland cement and water, and its application in sports courts. It was used the detailed reutilization of micro rubber in its most primordial, micro form, highlighting the powder pattern as the additional balancing of the mortar, analyzing the evolution of the mechanical properties. Percentages of 5, 10 and 15% rubber were used based on the total mass of the trace, where there is no removal of aggregates or cement, only increment of the rubber. The results obtained through the mechanical test of simple compression showed that the rubber, added to the mortar, presents low mechanical resistance compared to the reference trait, the study of this subject is vast of possibilities to be explored. In this sense, we seek sustainability and innovation from the use of an ecological material, thus adding value and reducing the impact of this material on the environment. The manufacturing process takes place from the direct mixing of cement paste and rubber, whether manually, mechanically or industrially. It results in the production of a low-cost mortar, through the use of recycled rubber, with high efficiency in general properties, such as compressive strength and friction coefficient, allowing its use for the construction of floors for sports courts with high durability. Thus, it is possible to reuse this micro rubber residue in other applications in simple concrete artifacts.

Keywords: civil construction, ecological mortar, high efficiency, rubber

Procedia PDF Downloads 140
126 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study

Authors: S. P. Pradhan, Amulya Ratna Roul

Abstract:

A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.

Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation

Procedia PDF Downloads 184
125 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages

Authors: Kawalpreet Kaur, Panagiotis Mitropoulos

Abstract:

The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.

Keywords: work structuring, bid packages, work breakdown, project participants

Procedia PDF Downloads 78
124 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 373
123 Modeling Depth Averaged Velocity and Boundary Shear Stress Distributions

Authors: Ebissa Gadissa Kedir, C. S. P. Ojha, K. S. Hari Prasad

Abstract:

In the present study, the depth-averaged velocity and boundary shear stress in non-prismatic compound channels with three different converging floodplain angles ranging from 1.43ᶱ to 7.59ᶱ have been studied. The analytical solutions were derived by considering acting forces on the channel beds and walls. In the present study, five key parameters, i.e., non-dimensional coefficient, secondary flow term, secondary flow coefficient, friction factor, and dimensionless eddy viscosity, were considered and discussed. An expression for non-dimensional coefficient and integration constants was derived based on the boundary conditions. The model was applied to different data sets of the present experiments and experiments from other sources, respectively, to examine and analyse the influence of floodplain converging angles on depth-averaged velocity and boundary shear stress distributions. The results show that the non-dimensional parameter plays important in portraying the variation of depth-averaged velocity and boundary shear stress distributions with different floodplain converging angles. Thus, the variation of the non-dimensional coefficient needs attention since it affects the secondary flow term and secondary flow coefficient in both the main channel and floodplains. The analysis shows that the depth-averaged velocities are sensitive to a shear stress-dependent model parameter non-dimensional coefficient, and the analytical solutions are well agreed with experimental data when five parameters are included. It is inferred that the developed model may facilitate the interest of others in complex flow modeling.

Keywords: depth-average velocity, converging floodplain angles, non-dimensional coefficient, non-prismatic compound channels

Procedia PDF Downloads 74
122 Study on the Effects of Grassroots Characteristics on Reinforced Soil Performance by Direct Shear Test

Authors: Zhanbo Cheng, Xueyu Geng

Abstract:

Vegetation slope protection technique is economic, aesthetic and practical. Herbs are widely used in practice because of rapid growth, strong erosion resistance, obvious slope protection and simple method, in which the root system of grass plays a very important role. In this paper, through changing the variables value of grassroots quantity, grassroots diameter, grassroots length and grassroots reinforce layers, the direct shear tests were carried out to discuss the change of shear strength indexes of grassroots reinforced soil under different reinforce situations, and analyse the effects of grassroots characteristics on reinforced soil performance. The laboratory test results show that: (1) in the certain number of grassroots diameter, grassroots length and grassroots reinforce layers, the value of shear strength, and cohesion first increase and then reduce with the increasing of grassroots quantity; (2) in the certain number of grassroots quantity, grassroots length and grassroots reinforce layers, the value of shear strength and cohesion rise with the increasing of grassroots diameter; (3) in the certain number of grassroots diameter, and grassroots reinforce layers, the value of shear strength and cohesion raise with the increasing of grassroots length in a certain range of grassroots quantity, while the value of shear strength and cohesion first rise and then decline with the increasing of grassroots length when the grassroots quantity reaches a certain value; (4) in the certain number of grassroots quantity, grassroots diameter, and grassroots length, the value of shear strength and cohesion first climb and then decline with the increasing of grassroots reinforced layers; (5) the change of internal friction angle is small in different parameters of grassroots. The research results are of importance for understanding the mechanism of vegetation protection for slopes and determining the parameters of grass planting.

Keywords: direct shear test, reinforced soil, grassroots characteristics, shear strength indexes

Procedia PDF Downloads 178
121 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 152
120 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential

Authors: Rasheed Amao Busari, Ahmed Ibrahim

Abstract:

The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.

Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit

Procedia PDF Downloads 77
119 Module Based Review over Current Regenerative Braking Landing Gear

Authors: Madikeri Rohit

Abstract:

As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.

Keywords: regenerative braking, types of energy conversion, landing gear, energy storage

Procedia PDF Downloads 262
118 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R. K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Micro-alloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: cooling rate, hot forging, micro-alloyed, ring compression

Procedia PDF Downloads 361