Search results for: SSI system frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20221

Search results for: SSI system frequency

19621 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 138
19620 Way to Successful Enterprise Resource Planning System Implementation in Developing Countries: Case of Public Sector Unit

Authors: Suraj Kumar Mukti

Abstract:

Enterprise Resource Planning (ERP) system is a management tool to integrate all departments in an organization. It integrates business processes, manages resources efficiently and provides an appropriate decision support system to management. ERP system implementation is a typical and time taking process as well as money consuming process. Articles related to key success factors of ERP system implementation are available in the literature, but rare authors have focused on roadmap of successful ERP system implementation. Postponement is better if the organization is not ready to implement ERP system in better way; hence checking of organization’s preparation to adopt new system is an important prerequisite to ensure the success of ERP system implementation in an organization. Then comes what will be called as success of ERP system implementation. Benefits achieved by ERP system may be categorized into two categories; viz. tangible and intangible benefits. This research article presents a roadmap to ensure the success of ERP system implementation and benefits achieved through the new system as in success indicator. A case study is presented to evaluate the success and benefit achieved through the new system. The article gives a comprehensive approach to academicians and a roadmap to the organizations seeking to implement the ERP system.

Keywords: ERP system, decision support system, tangible, intangible

Procedia PDF Downloads 315
19619 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine

Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova

Abstract:

The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.

Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave

Procedia PDF Downloads 363
19618 Relationshiop Between Occupants' Behaviour And Indoor Air Quality In Malaysian Public Hospital Outpatient Department

Authors: Farha Ibrahim, Ely Zarina Samsudin, Ahmad Razali Ishak, Jeyanthini Sathasivam

Abstract:

Introduction: Indoor air quality (IAQ) has recently gained substantial traction as the airborne transmission of infectious respiratory disease has become an increasing public health concern. Public hospital outpatient department (OPD). IAQ warrants special consideration as it is the most visited department in which patients and staff are all directly impacted by poor IAQ. However, there is limited evidence on IAQ in these settings. Moreover, occupants’ behavior like occupant’s movement and operation of door, windows and appliances, have been shown to significantly affect IAQ, yet the influence of these determinants on IAQ in such settings have not been established. Objectives: This study aims to examine IAQ in Malaysian public hospitals OPD and assess its relationships with occupants’ behavior. Methodology: A multicenter cross-sectional study in which stratified random sampling of Johor public hospitals OPD (n=6) according to building age was conducted. IAQ measurements include indoor air temperature, relative humidity (RH), air velocity (AV), carbon dioxide (CO2), total bacterial count (TBC) and total fungal count (TFC). Occupants’ behaviors in Malaysian public hospital OPD are assessed using observation forms, and results were analyzed. Descriptive statistics were performed to characterize all study variables, whereas non-parametric Spearman Rank correlation analysis was used to assess the correlation between IAQ and occupants’ behavior. Results: After adjusting for potential cofounder, the study has suggested that occupants’ movement in new building, like seated quietly, is significantly correlated with AV in new building (r 0.642, p-value 0.010), CO2 in new (r 0.772, p-value <0.001) and old building (r -0.559, p-value 0.020), TBC in new (r 0.747, p-value 0.001) and old building (r -0.559, p-value 0.020), and TFC in new (r 0.777, p-value <0.001) and old building (r -0.485, p-value 0.049). In addition, standing relaxed movement is correlated with indoor air temperature (r 0.823, p-value <0.001) in new building, CO2 (r 0.559, p-value 0.020), TBC (r 0.559, p-value 0.020), and TFC (r -0.485, p-value 0.049) in old building, while walking is correlated with AV in new building (r -0.642, p-value 0.001), CO2 in new (r -0.772, p-value <0.001) and old building (r 0.559, p-value 0.020), TBC in new (r -0.747, p-value 0.001) and old building (r 0.559, p-value 0.020), and TFC in old building (r -0.485, p-value 0.049). The indoor air temperature is significantly correlated with number of doors kept opened (r 0.522, p-value 0.046), frequency of door adjustments (r 0.753, p-value 0.001), number of windows kept opened (r 0.522, p-value 0.046), number of air-conditioned (AC) switched on (r 0.698, p-value 0.004) and frequency of AC adjustment (r 0.753, p-value 0.001) in new hospital OPD building. AV is found to be significantly correlated with number of doors kept opened (r 0.642, p-value 0.01), frequency of door adjustments (r 0.553, p-value 0.032), number of windows kept opened (r 0.642, p-value 0.01), and frequency of AC adjustment, number of fans switched on, and frequency of fans adjustment(all with r 0.553, p-value 0.032) in new building. In old hospital OPD building, the number of doors kept opened is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), frequency of door adjustment is significantly correlated with CO₂, TBC (both r-0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of windows kept opened is significantly correlated with CO₂, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), frequency of window adjustment is significantly correlated with CO₂,TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of AC switched on is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049),, frequency of AC adjustment is significantly correlated with CO2 (r 0.559, p-value 0.020), TBC (0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of fans switched on is significantly correlated with CO2, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), and frequency of fans adjustment is significantly correlated with CO2, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049). Conclusion: This study provided evidence on IAQ parameters in Malaysian public hospitals OPD and significant factors that may be effective targets of prospective intervention, thus enabling stakeholders to develop appropriate policies and programs to mitigate IAQ issues in Malaysian public hospitals OPD.

Keywords: outpatient department, iaq, occupants practice, public hospital

Procedia PDF Downloads 80
19617 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 184
19616 Study of a Lean Premixed Combustor: A Thermo Acoustic Analysis

Authors: Minoo Ghasemzadeh, Rouzbeh Riazi, Shidvash Vakilipour, Alireza Ramezani

Abstract:

In this study, thermo acoustic oscillations of a lean premixed combustor has been investigated, and a mono-dimensional code was developed in this regard. The linearized equations of motion are solved for perturbations with time dependence〖 e〗^iwt. Two flame models were considered in this paper and the effect of mean flow and boundary conditions were also investigated. After manipulation of flame heat release equation together with the equations of flow perturbation within the main components of the combustor model (i.e., plenum/ premixed duct/ and combustion chamber) and by considering proper boundary conditions between the components of model, a system of eight homogeneous equations can be obtained. This simplification, for the main components of the combustor model, is convenient since low frequency acoustic waves are not affected by bends. Moreover, some elements in the combustor are smaller than the wavelength of propagated acoustic perturbations. A convection time is also assumed to characterize the required time for the acoustic velocity fluctuations to travel from the point of injection to the location of flame front in the combustion chamber. The influence of an extended flame model on the acoustic frequencies of combustor was also investigated, assuming the effect of flame speed as a function of equivalence ratio perturbation, on the rate of flame heat release. The abovementioned system of equations has a related eigenvalue equation which has complex roots. The sign of imaginary part of these roots determines whether the disturbances grow or decay and the real part of these roots would give the frequency of the modes. The results show a reasonable agreement between the predicted values of dominant frequencies in the present model and those calculated in previous related studies.

Keywords: combustion instability, dominant frequencies, flame speed, premixed combustor

Procedia PDF Downloads 370
19615 Argos System: Improvements and Future of the Constellation

Authors: Sophie Baudel, Aline Duplaa, Jean Muller, Stephan Lauriol, Yann Bernard

Abstract:

Argos is the main satellite telemetry system used by the wildlife research community, since its creation in 1978, for animal tracking and scientific data collection all around the world, to analyze and understand animal migrations and behavior. The marine mammals' biology is one of the major disciplines which had benefited from Argos telemetry, and conversely, marine mammals biologists’ community has contributed a lot to the growth and development of Argos use cases. The Argos constellation with 6 satellites in orbit in 2017 (Argos 2 payload on NOAA 15, NOAA 18, Argos 3 payload on NOAA 19, SARAL, METOP A and METOP B) is being extended in the following years with Argos 3 payload on METOP C (launch in October 2018), and Argos 4 payloads on Oceansat 3 (launch in 2019), CDARS in December 2021 (to be confirmed), METOP SG B1 in December 2022, and METOP-SG-B2 in 2029. Argos 4 will allow more frequency bands (600 kHz for Argos4NG, instead of 110 kHz for Argos 3), new modulation dedicated to animal (sea turtle) tracking allowing very low transmission power transmitters (50 to 100mW), with very low data rates (124 bps), enhancement of high data rates (1200-4800 bps), and downlink performance, at the whole contribution to enhance the system capacity (50,000 active beacons per month instead of 20,000 today). In parallel of this ‘institutional Argos’ constellation, in the context of a miniaturization trend in the spatial industry in order to reduce the costs and multiply the satellites to serve more and more societal needs, the French Space Agency CNES, which designs the Argos payloads, is innovating and launching the Argos ANGELS project (Argos NEO Generic Economic Light Satellites). ANGELS will lead to a nanosatellite prototype with an Argos NEO instrument (30 cm x 30 cm x 20cm) that will be launched in 2019. In the meantime, the design of the renewal of the Argos constellation, called Argos For Next Generations (Argos4NG), is on track and will be operational in 2022. Based on Argos 4 and benefitting of the feedback from ANGELS project, this constellation will allow revisiting time of fewer than 20 minutes in average between two satellite passes, and will also bring more frequency bands to improve the overall capacity of the system. The presentation will then be an overview of the Argos system, present and future and new capacities coming with it. On top of that, use cases of two Argos hardware modules will be presented: the goniometer pathfinder allowing recovering Argos beacons at sea or on the ground in a 100 km radius horizon-free circle around the beacon location and the new Argos 4 chipset called ‘Artic’, already available and tested by several manufacturers.

Keywords: Argos satellite telemetry, marine protected areas, oceanography, maritime services

Procedia PDF Downloads 159
19614 Coding and Decoding versus Space Diversity for ‎Rayleigh Fading Radio Frequency Channels ‎

Authors: Ahmed Mahmoud Ahmed Abouelmagd

Abstract:

The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.

Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, ‎convolution coding, viterbi decoding, space diversity

Procedia PDF Downloads 427
19613 Inventory of Aromatic and Medicinal Plants Used in Natural Cosmetics in Western Algeria

Authors: Faiza Chaib, Yasmina-Nadia Bendahmane, Fatima Zohra Ghanemi

Abstract:

In order to know the traditional use of aromatic and medicinal plants in natural cosmetics, we carried out an ethnobotanical study using an online quiz among the Algerian population residing mainly in western Algeria (Oran, Tlemcen, and Mostaganem). Our study identified 37 plant species used as cosmetic plants, divided into 9 botanical families. The families mainly used and the richest in species are the lamiaceae, the apiecea, and the rutaceae. Our study states that the 5 species with the highest frequency of use and highest citation value are lemon, chamomile, turmeric, garlic, and lavender. Lemon takes first place in the order of frequency. The plants listed have been listed in tables grouping the identification of plants by their scientific and vernacular names, frequency of use, parts used, parts of the body concerned, desired action, as well as the main traditional recipes. This study allowed us to highlight the importance of aromatic plants and to appreciate their traditional practices in natural cosmetics.

Keywords: aromatic plants, ethnobotanical survey, traditional use, natural cosmetics, questionnaire, western Algeria

Procedia PDF Downloads 96
19612 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions

Procedia PDF Downloads 350
19611 Representation of the Solution of One Dynamical System on the Plane

Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox

Abstract:

This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.

Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system

Procedia PDF Downloads 184
19610 Cosmetic Recommendation Approach Using Machine Learning

Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake

Abstract:

The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.

Keywords: content-based filtering, cosmetics, machine learning, recommendation system

Procedia PDF Downloads 123
19609 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 113
19608 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 52
19607 Cultural Analysis of Dowry System with Relation to Women Prestige in District Swabi

Authors: Ullah Aman

Abstract:

The practice of giving dowry was meant to assist a newly-wed couple to start their life together with ease; however, now it has turned into a commercial transaction in which monetary considerations receive priority over the personal merits of the bride. The present study was designed to explore the causes and consequences of dowry system and to measure the association between dowry and women prestige in district Swabi. A sample size of 378 household (female) Respondents was randomly selected through proportional allocation method. The data was interpreted into frequency and percentages while to measure the relationship between Dowry system and Women Prestige, Chi-Square statistic was applied. Result indicated that majority of the 316(83.6%) respondents stated that Family members are in favor of high dowry because high dowry is today’s women need which is disclosed by 302(79.9%) of the sample size. In addition to this, most 320(84.7%) of the respondents has opined that low dowry leads to broken families in the society. Moreover, a strong association (p=0.000) was determined between high dowry and women prestige. Similarly, a strong significant relation was found (p=0.000) between women prestige and low dowry mortifying women prestige in our society. The study concluded that dowry, deeply rooted in the society is an immorality which must be strictly banned in the country. It is a herculean task to completely eliminate dowry system from the nation but slowly and gradually efforts are being made in this direction. Dowry is a sure cause of promoting intense conflicts between the families, quarrels and inculcates greed in the society. Government and the builders of the social fabric should strictly work on it, banning this system for each and every class in Pakistan. Moreover, for curbing this mal practice we must put effort to bring social awareness to the society are some of the recommendation.

Keywords: Dowry, women, prestige, causes,

Procedia PDF Downloads 140
19606 Numerical Modeling and Experimental Analysis of a Pallet Isolation Device to Protect Selective Type Industrial Storage Racks

Authors: Marcelo Sanhueza Cartes, Nelson Maureira Carsalade

Abstract:

This research evaluates the effectiveness of a pallet isolation device for the protection of selective-type industrial storage racks. The device works only in the longitudinal direction of the aisle, and it is made up of a platform installed on the rack beams. At both ends, the platform is connected to the rack structure by means of a spring-damper system working in parallel. A system of wheels is arranged between the isolation platform and the rack beams in order to reduce friction, decoupling of the movement and improve the effectiveness of the device. The latter is evaluated by the reduction of the maximum dynamic responses of basal shear load and story drift in relation to those corresponding to the same rack with the traditional construction system. In the first stage, numerical simulations of industrial storage racks were carried out with and without the pallet isolation device. The numerical results allowed us to identify the archetypes in which it would be more appropriate to carry out experimental tests, thus limiting the number of trials. In the second stage, experimental tests were carried out on a shaking table to a select group of full-scale racks with and without the proposed device. The movement simulated by the shaking table was based on the Mw 8.8 magnitude earthquake of February 27, 2010, in Chile, registered at the San Pedro de la Paz station. The peak ground acceleration (PGA) was scaled in the frequency domain to fit its response spectrum with the design spectrum of NCh433. The experimental setup contemplates the installation of sensors to measure relative displacement and absolute acceleration. The movement of the shaking table with respect to the ground, the inter-story drift of the rack and the pallets with respect to the rack structure were recorded. Accelerometers redundantly measured all of the above in order to corroborate measurements and adequately capture low and high-frequency vibrations, whereas displacement and acceleration sensors are respectively more reliable. The numerical and experimental results allowed us to identify that the pallet isolation period is the variable with the greatest influence on the dynamic responses considered. It was also possible to identify that the proposed device significantly reduces both the basal cut and the maximum inter-story drift by up to one order of magnitude.

Keywords: pallet isolation system, industrial storage racks, basal shear load, interstory drift.

Procedia PDF Downloads 64
19605 From Linear to Nonlinear Deterrence: Deterrence for Rising Power

Authors: Farhad Ghasemi

Abstract:

Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.

Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence

Procedia PDF Downloads 129
19604 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access

Authors: A. Asgharzadeh, M. Maroufi

Abstract:

5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.

Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband

Procedia PDF Downloads 123
19603 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation

Authors: Mohamed Elassaly

Abstract:

The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.

Keywords: damage, frequency content, ground motion, PGA, RC building, seismic

Procedia PDF Downloads 394
19602 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 405
19601 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks

Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel

Abstract:

The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.

Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy

Procedia PDF Downloads 281
19600 Basal Cell Carcinoma: Epidemiological Analysis of a 5-Year Period in a Brazilian City with a High Level of Solar Radiation

Authors: Maria E. V. Amarante, Carolina L. Cerdeira, Julia V. Cortes, Fiorita G. L. Mundim

Abstract:

Basal cell carcinoma (BCC) is the most prevalent type of skin cancer in humans. It arises from the basal cells of the epidermis and cutaneous appendages. The role of sunlight exposure as a risk factor for BCC is very well defined due to its power to influence genetic mutations, in addition to having a suppressor effect on the skin immune system. Despite showing low metastasis and mortality rates, the tumor is locally infiltrative, aggressive, and destructive. Considering the high prevalence rate of this carcinoma and the importance of early detection, a retrospective study was carried out in order to correlate the clinical data available on BBC, characterize it epidemiologically, and thus enable effective prevention measures for the population. Data on the period from January 2015 to December 2019 were collected from the medical records of patients registered at one pathology service located in the southeast region of Brazil, known as SVO, which delivers skin biopsy results. The study was aimed at correlating the variables, sex, age, and subtypes found. Data analysis was performed using the chi-square test at a nominal significance level of 5% in order to verify the independence between the variables of interest. Fisher's exact test was applied in cases where the absolute frequency in the cells of the contingency table was less than or equal to five. The statistical analysis was performed using the R® software. Ninety-three basal cell carcinoma were analyzed, and its frequency in the 31-to 45-year-old age group was 5.8 times higher in men than in women, whereas, from 46 to 59 years, the frequency was found 2.4 times higher in women than in men. Between the ages of 46 to 59 years, it should be noted that the sclerodermiform subtype appears more than the solid one, with a difference of 7.26 percentage points. Reversely, the solid form appears more frequently in individuals aged 60 years or more, with a difference of 8.57 percentage points. Among women, the frequency of the solid subtype was 9.93 percentage points higher than the sclerodermiform frequency. In males, the same percentage difference is observed, but sclerodermiform is the most prevalent subtype. It is concluded in this study that, in general, there is a predominance of basal cell carcinoma in females and in individuals aged 60 years and over, which demonstrates the tendency of this tumor. However, when rarely found in younger individuals, the male gender prevailed. The most prevalent subtype was the solid one. It is worth mentioning that the sclerodermiform subtype, which is more aggressive, was seen more frequently in males and in the 46-to 59-year-old range.

Keywords: basal cell carcinoma, epidemiology, sclerodermiform basal cell carcinoma, skin cancer, solar radiation, solid basal cell carcinoma

Procedia PDF Downloads 130
19599 Device Control Using Brain Computer Interface

Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh

Abstract:

In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.

Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network

Procedia PDF Downloads 324
19598 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions

Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari

Abstract:

Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.

Keywords: current density, duty cycle, microstructure, nickel, pulse frequency

Procedia PDF Downloads 361
19597 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms

Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker

Abstract:

Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.

Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy

Procedia PDF Downloads 409
19596 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210

Procedia PDF Downloads 339
19595 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.

Keywords: solar system, agricultural greenhouse, heating, storage, drying

Procedia PDF Downloads 72
19594 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 25
19593 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 477
19592 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution

Authors: Clémence Royer, Stéphane Mazouffre

Abstract:

Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.

Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations

Procedia PDF Downloads 78