Search results for: pan-tilt application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8237

Search results for: pan-tilt application

1997 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory

Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul

Abstract:

The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.

Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework

Procedia PDF Downloads 535
1996 Sea Border Dispute between Greece and Turkey in the Mediterrenean: Implications for Turkey’s Maritime Security and Its Military Spending

Authors: Aslihan Caliskan

Abstract:

The term Mediterranean comes from the Latin “mediterraneus” (Medius, "middle" plus Terra, "land, earth"). For the ancient Romans, the Mediterranean was the center of the earth as they knew it. The desire to gain control of the Mediterranean has led to disputes between many nations throughout history, some of which continue to this day. The recent major natural gas discoveries in the Mediterranean have aggravated ongoing tensions in some neighboring countries. The sea border dispute between Turkey and Greece & Greek-Cypriot side is one of the most critical conflicts in the Mediterranean Sea region. This unresolved dispute has many implications for all countries involved, as well as for third parties that have direct or indirect interests in the region. The research question of this context is what are the implications of this controversial sea border problem on the maritime security of Turkey and its military spending. In this paper, the quantitative method is used. Records from the Turkish Defense Ministry, data from the Turkish naval forces have been obtained. In addition, literature research and the United Nations Convention on the Law of the Sea (UNCLOS) application cases were evaluated, and an incident analysis was carried out. This research shows that the sea border dispute issue has a significant impact on the Turkish military both in terms of the structures required to ensure maritime and border security, as well as rising military costs and its macroeconomic implications. The paper begins with a brief overview of relevant principles and methods applied for delimiting th esea borders. The paper continues with a brief description and a background of the sea border dispute between Turkey and Greece & Greek-Cypriot side in the light of the United Nations Convention on the Law of the Sea (UNCLOS). An analysis of the implications of the dispute on Turkey’s maritime security and its military spending is provided in the following chapters. The paper ends with concluding remarks of the author, including suggestions for the way forward.

Keywords: sea border security, mediterranean sea, greece-turkey dispute, limitation of sea, united nations convention on the law of the sea (UNCLOS)

Procedia PDF Downloads 186
1995 Application of Pyridine-based Water-soluble Corrosion Inhibitor in Offshore Sweet Oil Pipeline

Authors: M. S. Yalfani, J. Kohzadi, P. Ghadimi, S. Sobhani, M. Ghadimi

Abstract:

The use of oil and water-soluble corrosion inhibitors has been established in Iranian oil and gas production systems for a long time. Imidazoline and its derivatives are being extensively used which are known as conventional corrosion inhibitors. This type of product has shown significant performance and low side effects, so that could monopolize the market of inhibitors in this region. However, the price growth of imidazolines, as well as the development of new lower-cost components with similar or even higher performance than imidazoline, have influenced the exclusive market of imidazoline-based products. During the latest years, pyridine and its derivatives have challenged imidazoline due to their remarkable anticorrosive properties and lower prices as well. Recently, we presented a formulated water-soluble inhibitor based on pyridine - an alkyl pyridine quaternary salt (APQS) - which could successfully pass all lab tests and eventually succeeded in being applied in an offshore sweet oil pipeline. The product was able to achieve high corrosion protection (> 90 %) with the LPR technique at low dosages of 15-25 ppm under severe corrosion conditions. Moreover, the lab test results showed that the APQS molecule is able to form a strong and persistent bond with the metal surface. The product was later nominated to be evaluated through a field trial in an offshore sweet oil pipeline where PH2S < 0.05 psi and CO2 is 6.4 mol%. The three-month trial - extended to six months- resulted in remarkable internal protection obtained by continuous injection of 10 ppm inhibitor, which was as low as 1 mpy measured by both weight loss corrosion coupons and online ER probes. In addition, no side effects, such as tight emulsion and stable foaming, were observed. The residual of the corrosion inhibitor was measured at the end of the pipeline to ensure the full coverage of the inhibitor throughout the pipeline. Eventually, these promising results were able to convince the end user to consider pyridine-based inhibitors as a reliable alternative to imidazoline.

Keywords: corrosion inhibitor, pyridine, sweet oil, pipeline, offshore

Procedia PDF Downloads 12
1994 Exploring Management of the Fuzzy Front End of Innovation in a Product Driven Startup Company

Authors: Dmitry K. Shaytan, Georgy D. Laptev

Abstract:

In our research we aimed to test a managerial approach for the fuzzy front end (FFE) of innovation by creating controlled experiment/ business case in a breakthrough innovation development. The experiment was in the sport industry and covered all aspects of the customer discovery stage from ideation to prototyping followed by patent application. In the paper we describe and analyze mile stones, tasks, management challenges, decisions made to create the break through innovation, evaluate overall managerial efficiency that was at the considered FFE stage. We set managerial outcome of the FFE stage as a valid product concept in hand. In our paper we introduce hypothetical construct “Q-factor” that helps us in the experiment to distinguish quality of FFE outcomes. The experiment simulated for entrepreneur the FFE of innovation and put on his shoulders responsibility for the outcome of valid product concept. While developing managerial approach to reach the outcome there was a decision to look on product concept from the cognitive psychology and cognitive science point of view. This view helped us to develop the profile of a person whose projection (mental representation) of a new product could optimize for a manager or entrepreneur FFE activities. In the experiment this profile was tested to develop breakthrough innovation for swimmers. Following the managerial approach the product concept was created to help swimmers to feel/sense water. The working prototype was developed to estimate the product concept validity and value added effect for customers. Based on feedback from coachers and swimmers there were strong positive effect that gave high value for customers, and for the experiment – the valid product concept being developed by proposed managerial approach for the FFE. In conclusions there is a suggestion of managerial approach that was derived from experiment.

Keywords: concept development, concept testing, customer discovery, entrepreneurship, entrepreneurial management, idea generation, idea screening, startup management

Procedia PDF Downloads 445
1993 Generic Competences, the Great Forgotten: Teamwork in the Undergraduate Degree in Translation and Interpretation

Authors: María-Dolores Olvera-Lobo, Bryan John Robinson, Juncal Gutierrez-Artacho

Abstract:

Graduates are equipped with a wide range of generic competencies which complement solid curricular competencies and facilitate their access to the labour market in diverse fields and careers. However, some generic competencies such as instrumental, personal and systemic competencies related to teamwork and interpersonal communication skills, decision-making and organization skills are seldom taught explicitly and even less often assessed. In this context, translator training has embraced a broad range of competencies specified in the undergraduate program currently taught at universities and opens up the learning experience to cover areas often ignored due to the difficulties inherent in both teaching and assessment. In practice, translator training combines two well-established approaches to teaching/learning: project-based learning and genuinely cooperative – or merely collaborative – learning. Our professional approach to translator training is a model focused on and adapted to the teleworking context of professional translation and presented through the medium of blended e-learning. Teamwork-related competencies are extremely relevant, and they require explicit and implicit teaching so that graduates can be confident about their capacity to make their way in professional contexts. In order to highlight the importance of teamwork and intra-team relationships beyond the classroom, we aim to raise awareness of teamwork processes so as to empower translation students in managing their interaction and ensure that they gain valuable pre-professional experience. With these objectives, at the University of Granada (Spain) we have developed a range of classroom activities and assessment tools. The results of their application are summarized in this study.

Keywords: blended learning, collaborative teamwork, cross-curricular competencies, higher education, intra-team relationships, students’ perceptions, translator training

Procedia PDF Downloads 169
1992 Theoretical Study of Substitutional Phosphorus and Nitrogen Pairs in Diamond

Authors: Tahani Amutairi, Paul May, Neil Allan

Abstract:

Many properties of semiconductor materials (mechanical, electronic, magnetic, and optical) can be significantly modified by introducing a point defect. Diamond offers extraordinary properties as a semiconductor, and doping seems to be a viable method of solving the problem associated with the fabrication of diamond-based electronic devices in order to exploit those properties. The dopants are believed to play a significant role in reducing the energy barrier to conduction and controlling the mobility of the carriers and the resistivity of the film. Although it has been proven that the n-type diamond semiconductor can be obtained with phosphorus doping, the resulting ionisation energy and mobility are still inadequate for practical application. Theoretical studies have revealed that this is partly because the effects of the many phosphorus atoms incorporated in the diamond lattice are compensated by acceptor states. Using spin-polarised hybrid density functional theory and a supercell approach, we explored the effects of bonding one N atom to a P in adjacent substitutional sites in diamond. A range of hybrid functional, including HSE06, B3LYP, PBE0, PBEsol0, and PBE0-13, were used to calculate the formation, binding, and ionisation energies, in order to explore the solubility and stability of the point defect. The equilibrium geometry and the magnetic and electronic structures were analysed and presented in detail. The defect introduces a unique reconstruction in a diamond where one of the C atoms coordinated with the N atom involved in the elongated C-N bond and creates a new bond with the P atom. The simulated infrared spectra of phosphorus-nitrogen defects were investigated with different supercell sizes and found to contain two sharp peaks at the edges of the spectrum, one at a high frequency 1,379 cm⁻¹ and the second appearing at the end range, 234 cm⁻¹, as obtained with the largest supercell (216).

Keywords: DFT, HSE06, B3LYP, PBE0, PBEsol0, PBE0-13

Procedia PDF Downloads 85
1991 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application

Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham

Abstract:

E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.

Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management

Procedia PDF Downloads 103
1990 Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework

Authors: Boce Zhang, Yaguang Luo

Abstract:

Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain.

Keywords: climacteric produce, controllable ripening, food waste challenge, metal organic framework

Procedia PDF Downloads 247
1989 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation

Procedia PDF Downloads 235
1988 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games

Authors: Ogar Ofut Tumenayu, Olga Shabalina

Abstract:

This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.

Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration

Procedia PDF Downloads 67
1987 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol

Authors: Poonam Malik, Ravi Bhushan

Abstract:

This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).

Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis

Procedia PDF Downloads 155
1986 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency

Procedia PDF Downloads 249
1985 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects

Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar

Abstract:

In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.

Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties

Procedia PDF Downloads 428
1984 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 157
1983 The Effectiveness of Copegus (Ribavirin) Placed in a Field of Unexplored Properties of Low-Level Laser Radiation in the Treatment of Long-Covid Syndrome

Authors: Naylya Djumaeva

Abstract:

Since the end of 2019, the world has been shaken by an infection that has claimed the lives of more than six and a half million patients. Currently, SARS-CoV-2 not only causes acute damage but has long-term consequences affecting every organ and has brought a wave of a new chronic disabling condition called Long-Covid..This preliminary study describes an application of un-explored properties of low-level laser radiation with laser- light emitter in the field of which is placed Copegus (Ribavirin) with the aim of treatment of patients with Long-Covid syndrome. The difference from the traditional use of the drug is that Copegus was not prescribed to the patient by the traditional method - orally or intravenously, and the medicinal properties of the drug were introduced into the patient’s body using the un-explored properties of low-power laser radiation. Ninety eight patients with Long- Covid syndrome were observed. The obtained findings suggest that under the influence of the field formed into the laser- light emitter with a Copegus placed inside the field, the remote transfer of pharmacological properties of Сopegus occurs. Conclusions about the produced effect of exposure were made based on improvement in the condition of patients, the disappearance of complaints, and positive changes in various diagnostic tests performed by the patients. Biography: Djumaeva N completed her PhD from the Institute of Epidemiology, Microbiology and Infectious Diseases in 2000. In her dissertation work devoted to the treatment of patients with chronic hepatitis B virus infection, she presented data on the possible influence of Complex Homeopathic Preparations on the organization of bound intracellular water in the cells of the body. She is the Consultant (Neurologist) at the Scientific-Research Institute for Virology, Uzbekistan, and an expert in “medicament testing” method (30 years). She has published 43 papers, including 2 patents.

Keywords: long covid, low level laser, copegus, laser- light emmiter

Procedia PDF Downloads 95
1982 Study of the Anaerobic Degradation Potential of High Strength Molasses Wastewater

Authors: M. Mischopoulou, P. Naidis, S. Kalamaras, T. Kotsopoulos, P. Samaras

Abstract:

The treatment of high strength wastewater by an Upflow Anaerobic Sludge Blanket (UASB) reactor has several benefits, such as high organic removal efficiency, short hydraulic retention time along with low operating costs. In addition, high volumes of biogas are released in these reactors, which can be utilized in several industrial facilities for energy production. This study aims at the examination of the application potential of anaerobic treatment of wastewater, with high molasses content derived from yeast manufacturing, by a lab-scale UASB reactor. The molasses wastewater and the sludge used in the experiments were collected from the wastewater treatment plant of a baker’s yeast manufacturing company. The experimental set-up consisted of a 15 L thermostated UASB reactor at 37 ◦C. Before the reactor start-up, the reactor was filled with sludge and molasses wastewater at a ratio 1:1 v/v. Influent was fed to the reactor at a flowrate of 12 L/d, corresponding to a hydraulic residence time of about 30 h. Effluents were collected from the system outlet and were analyzed for the determination of the following parameters: COD, pH, total solids, volatile solids, ammonium, phosphates and total nitrogen according to the standard methods of analysis. In addition, volatile fatty acid (VFA) composition of the effluent was determined by a gas chromatograph equipped with a flame ionization detector (FID), as an indicator to evaluate the process efficiency. The volume of biogas generated in the reactor was daily measured by the water displacement method, while gas composition was analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD). The effluent quality was greatly enhanced due to the use of the UASB reactor and high rate of biogas production was observed. The anaerobic treatment of the molasses wastewater by the UASB reactor improved the biodegradation potential of the influent, resulting at high methane yields and an effluent with better quality than the raw wastewater.

Keywords: anaerobic digestion, biogas production, molasses wastewater, UASB reactor

Procedia PDF Downloads 271
1981 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer

Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma

Abstract:

Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.

Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material

Procedia PDF Downloads 71
1980 Recreation and Environmental Quality of Tropical Wetlands: A Social Media Based Spatial Analysis

Authors: Michael Sinclair, Andrea Ghermandi, Sheela A. Moses, Joseph Sabu

Abstract:

Passively crowdsourced data, such as geotagged photographs from social media, represent an opportunistic source of location-based and time-specific behavioral data for ecosystem services analysis. Such data have innovative applications for environmental management and protection, which are replicable at wide spatial scales and in the context of both developed and developing countries. Here we test one such innovation, based on the analysis of the metadata of online geotagged photographs, to investigate the provision of recreational services by the entire network of wetland ecosystems in the state of Kerala, India. We estimate visitation to individual wetlands state-wide and extend, for the first time to a developing region, the emerging application of cultural ecosystem services modelling using data from social media. The impacts of restoration of wetland areal extension and water quality improvement are explored as a means to inform more sustainable management strategies. Findings show that improving water quality to a level suitable for the preservation of wildlife and fisheries could increase annual visits by 350,000, an increase of 13% in wetland visits state-wide, while restoring previously encroached wetland area could result in a 7% increase in annual visits, corresponding to 49,000 visitors, in the Ashtamudi and Vembanad lakes alone, two large coastal Ramsar wetlands in Kerala. We discuss how passive crowdsourcing of social media data has the potential to improve current ecosystem service analyses and environmental management practices also in the context of developing countries.

Keywords: coastal wetlands, cultural ecosystem services, India, passive crowdsourcing, social media, wetland restoration

Procedia PDF Downloads 156
1979 Sustainable Milling Process for Tensile Specimens

Authors: Shilpa Kumari, Ramakumar Jayachandran

Abstract:

Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.

Keywords: dry milling, tensile testing, wet milling, 6xxx alloy

Procedia PDF Downloads 198
1978 The Musician as the Athlete: Psychological Response to Injury

Authors: Shulamit Sternin

Abstract:

Athletes experience injuries that can have both a physical and psychological impact on the individual. In such instances, athletes are able to rely on the established field of sports psychology to facilitate holistic rehabilitation. Musicians, like athletes rely on their bodies to perform in much the same way athletes do and are also susceptible to injury. Due to the similar performative nature of succeeding as an athletes or a musician, these careers share many of the same primary psychological concerns and therefore it is reasonable that athletes and musicians may require similar rehabilitation post-injury. However, musicians face their own unique psychological challenges and understanding the needs of an injured athlete can serve as a foundation for understanding the injured musician but is not enough to fully rehabilitate an injured musician. The current research surrounding musicians and their injuries is primarily focused on physiological aspects of injury and rehabilitation; the psychological aspects have not yet received adequate attention resulting in poor musician rehabilitation post- injury. This review paper uses current models of psychological response to injury in athletes to draw parallels with the psychological response to injury in musicians. Search engines such as Medline and PsycInfo were systematically searched using specific key words, such as psychological response, injury, athlete, and musician. Studies that focused on post-injury psychology of either the musician or the athlete were included. Within the literature there is evidence to support psychological responses, unique to the musician, that are not accounted for by current models of response in athletes. The models of psychological response to injury in athletes are inadequate tools for application to the musician. Future directions for performance arts research that can fill the gaps in our understanding and modeling of musicians’ response to injury are discussed. A better understanding of the psychological impact of injuries on musicians holds significant implications for health care practitioners working with injured musicians. Understanding the unique barriers musicians face post-injury, and how support for this population must be tailored to properly suit musicians’ needs will aid in more holistic rehabilitation and a higher likelihood of musician’s returning to pre-injury performance levels.

Keywords: athlete, injury, musician, psychological response

Procedia PDF Downloads 205
1977 Consumer Values in the Perspective of Javanese Mataraman Society: Identification, Meaning, and Application

Authors: Anna Triwijayati, Etsa Astridya Setiyati, Titik Desi Harsoyo

Abstract:

Culture is the important determinant of human behavior and desire. Culture influences the consumer through the norms and values established by the society in which they live and reflect it. The cultural values of Javanese society certainly have united in the Javanese society behavior in consumption. This research is expected to give big enough theoretical benefits in the findings of cultural value in consumption in Javanese society. These can be an incentive in finding the local cultural value in many tribes in Indonesia, so one time, the local cultural value in Indonesia about consumption can be fundamental part in education and consumption practice in Indonesia. The approach used in this research is non positivist research or is known as qualitative approach. The method or type of research used in this research is ethnomethodology. The collection data is done in Central Java region. The research subject or informant is determined by the purposive technique by certain criteria determined by the researcher. The data is collected by deep interview and observation. Before the data analysis, the researcher does the storing method data stage and implements the data validity procedures. Then, the data is analyzed by the theme and interactive analysis technique. The Javanese Mataraman society has such consumption values such as has to be sufficient, be careful, economical, submit to the one who creates the life, the way life flow, and the present problem is thought in the present also. In the financial management for consumption, the consumer should have the simple life principles, has to be sufficient, has to be able to eat, has to be able to self-press, well-managed/diligent/accurate/careful, the open or transparent management, has the struggle effort, like to self-sacrifice and think about the future. The meaning of consumption value in family is centered to the submission and full-trust to God. These consumption values are applied in consumer behavior in self, family, investment and credit need in short term and long term perspective.

Keywords: values, consumer, consumption, Javanese Mataraman, ethnomethodology

Procedia PDF Downloads 392
1976 Investigation of Doping of CdSe QDs in Organic Semiconductor for Solar Cell Applications

Authors: Ganesh R. Bhand, N. B. Chaure

Abstract:

Cadmium selenide (CdSe) quantum dots (QDs) were prepared by solvothermal route. Subsequently a inorganic QDs-organic semiconductor (copper phthalocyanine) nanocomposite (i.e CuPc:CdSe nanocomposites) were produced by different concentration of QDs varied in CuPc. The nanocomposite thin films have been prepared by means of spin coating technique. The optical, structural and morphological properties of nanocomposite films have been investigated. The transmission electron microscopy (TEM) confirmed the formation of QDs having average size of  4 nm. The X-ray diffraction pattern exhibits cubic crystal structure of CdSe with reflection to (111), (220) and (311) at 25.4ᵒ, 42.2ᵒ and 49.6ᵒ respectively. The additional peak observed at lower angle at 6.9ᵒ in nanocomposite thin films are associated to CuPc. The field emission scanning electron microscopy (FESEM) observed that surface morphology varied in increasing concentration of CdSe QDs. The obtained nanocomposite show significant improvement in the thermal stability as compared to the pure CuPc indicated by thermo-gravimetric analysis (TGA) in thermograph. The effect in the Raman spectra of composites samples gives a confirm evidence of homogenous dispersion of CdSe in the CuPc matrix and their strong interaction between them to promotes charge transfer property. The success of reaction between composite was confirmed by Fourier transform infrared spectroscopy (FTIR). The photo physical properties were studied using UV - visible spectroscopy. The enhancement of the optical absorption in visible region for nanocomposite layer was observed with increasing the concentration of CdSe in CuPc. This composite may obtain the maximized interface between QDs and polymer for efficient charge separation and enhance the charge transport. Such nanocomposite films for potential application in fabrication of hybrid solar cell with improved power conversion efficiency.

Keywords: CdSe QDs, cupper phthalocyanine, FTIR, optical absorption

Procedia PDF Downloads 200
1975 Towards Sustainable Construction in the United Arab Emirates: Challenges and Opportunities

Authors: Yousef Alqaryouti, Mariam Al Suwaidi, Raed Mohmood AlKhuwaildi, Hind Kolthoum, Issa Youssef, Mohammed Al Imam

Abstract:

The UAE has experienced rapid economic growth due to its mature oil production industry, leading to a surge in urbanization and infrastructure development in the construction sector. Sustainable development practices are becoming increasingly important, and the UAE government has taken proactive measures to promote them, including the introduction of sustainable building codes, energy-efficient technologies, and renewable energy sources. Initiatives such as the Masdar City project and the Emirates Green Building Council further demonstrate the government's commitment to a cleaner and healthier environment. By adopting sustainable practices, the UAE can reduce its carbon footprint, lessen its reliance on fossil fuels, and achieve cost savings in the long run. The purpose of this paper is to conduct a thorough review of the current state of sustainability in the construction industry of the UAE. Our research methodology includes a local market survey and qualitative observational analysis of executed housing construction projects by the Mohammed Bin Rashid Housing Establishment. The market survey assesses eleven different challenging factors that affect sustainable construction project delivery. The qualitative observational research is based on data collected from three projects, including construction progress, bill of quantity, and construction program. The study concludes that addressing these challenges requires a collaborative team approach, incentivized contracts, traditional project management practices, an integrated project team, and an increase in sustainability awareness among stakeholders. The recommendations proposed in this study aim to promote and improve the application of sustainability in the UAE's construction industry for the future.

Keywords: sustainability, construction, challenges, opportunities, case study, market survey

Procedia PDF Downloads 57
1974 Cucurbita pepo L. Attenuates Diabetic Neuropathy by Targeting Oxidative Stress in STZ-Nicotinamide Induced Diabetic Rats

Authors: Navpreet Kaur, Randhir Singh

Abstract:

Diabetic neuropathy is one of the most common microvascular complications of diabetes mellitus which affects more than 50% of diabetic patients. The present study targeted oxidative stress mediated nerve damage in diabetic rats using a hydro-alcohol extract of Cucurbita pepo L. (Family: Cucurbitaceae) and its potential in treatment of diabetic neuropathy. Diabetes neuropathy was induced in Wistar rats by injection of streptozotocin (65 mg/kg, i.p.) 15 min after Nicotinamide (230 mg/kg, i.p.) administration. Hydro-alcohol extract of C. pepo seeds was assessed by oral administration at 100, 200 and 400 mg/kg in STZ-nicotinamide induced diabetic rats. Thermal hyperalgesia (Eddy's hot plate and tail immersion), mechanical hyperalgesia (Randall-Selitto) and tactile allodynia (Von Frey hair tests) were evaluated in all groups of streptozotocin diabetic rats to assess the extent of neuropathy. Tissue (sciatic nerve) antioxidant enzymes (SOD, CAT, GSH and LPO) levels were measured along with the formation of AGEs in serum to assess the effect of hydro-alcohol extract of C. pepo in ameliorating oxidative stress. Diabetic rats exhibited significantly decreased tail-flick latency in the tail-immersion test and decreased paw withdrawal threshold in both Randall-Selitto and von-Frey hair test. A decrease in the nociceptive threshold was accompanied by significantly increased oxidative stress in sciatic nerve of diabetic rats. Treatment with the C. pepo hydro-alcohol extract significantly attenuated all the behavioral and biochemical alterations in a dose-dependent manner. C. pepo attenuated the diabetic condition and also reversed neuropathic pain through modulation of oxidative stress and thus it may find application as a possible therapeutic agent against diabetic neuropathy.

Keywords: advanced glycation end products, antioxidant enzymes, cucurbita pepo, hyperglycemia

Procedia PDF Downloads 298
1973 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 83
1972 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 65
1971 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 325
1970 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 298
1969 Building an Arithmetic Model to Assess Visual Consistency in Townscape

Authors: Dheyaa Hussein, Peter Armstrong

Abstract:

The phenomenon of visual disorder is prominent in contemporary townscapes. This paper provides a theoretical framework for the assessment of visual consistency in townscape in order to achieve more favourable outcomes for users. In this paper, visual consistency refers to the amount of similarity between adjacent components of townscape. The paper investigates parameters which relate to visual consistency in townscape, explores the relationships between them and highlights their significance. The paper uses arithmetic methods from outside the domain of urban design to enable the establishment of an objective approach of assessment which considers subjective indicators including users’ preferences. These methods involve the standard of deviation, colour distance and the distance between points. The paper identifies urban space as a key representative of the visual parameters of townscape. It focuses on its two components, geometry and colour in the evaluation of the visual consistency of townscape. Accordingly, this article proposes four measurements. The first quantifies the number of vertices, which are points in the three-dimensional space that are connected, by lines, to represent the appearance of elements. The second evaluates the visual surroundings of urban space through assessing the location of their vertices. The last two measurements calculate the visual similarity in both vertices and colour in townscape by the calculation of their variation using methods including standard of deviation and colour difference. The proposed quantitative assessment is based on users’ preferences towards these measurements. The paper offers a theoretical basis for a practical tool which can alter the current understanding of architectural form and its application in urban space. This tool is currently under development. The proposed method underpins expert subjective assessment and permits the establishment of a unified framework which adds to creativity by the achievement of a higher level of consistency and satisfaction among the citizens of evolving townscapes.

Keywords: townscape, urban design, visual assessment, visual consistency

Procedia PDF Downloads 313
1968 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 144