Search results for: growth determinants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7097

Search results for: growth determinants

857 Mixotrophic Growth as a Tool for Increasing Polyhydroxyalkanoates (PHA) Production in Cyanobacteria

Authors: Zuzana Sedrlova, Eva Slaninova, Ines Fritz, Christina Daffert, Stanislav Obruca

Abstract:

Cyanobacteria are ecologically extremely important phototrophic gram-negative bacteria capable of oxygenic photosynthesis. They synthesize many interesting metabolites such as glycogen, carotenoids, but the most interesting metabolites are polyhydroxyalkanoates (PHA). The main advantage of cyanobacteria is the fact they do not require costly organic substrate and, oppositely, cyanobacteria can fix CO₂. PHA serves primarily as a carbon and energy source and occurs in the form of intracellular granules in bacterial cells. It is possible, PHA helps cyanobacteria to survive stress conditions since increased PHA synthesis was observed during cultivation in stress conditions. PHA is microbial biopolymers that are biodegradable with similar properties as petrochemical synthetic plastics. Production of PHA by heterotrophic bacteria is expensive; for price reduction waste materials as input, materials are used. Positively, cyanobacteria principally do not require organic carbon substrate since they are capable of CO₂ fixation. In this work, we demonstrated that stress conditions lead to the highest obtained yields of PHA in cyanobacterial cultures. Two cyanobacterial cultures from genera Synechocystis were used in this work. Cultivations were performed either in Erlenmayer flask or in tube multicultivator. Multiple stressors were applied on cyanobacterial cultures, and stressors include PHA precursors. PHA precursors are chemical substances and some of them do not occur naturally in the environment. Cultivation with the same PHA precursors in the same concentration led to a 1,6x higher amount of PHA when a multicultivator was used. The highest amount of PHA reached 25 % of PHA in dry cyanobacterial biomass. Both strains are capable of co-polymer synthesis in the presence of their structural precursor. The composition of co-polymer differs in Synechocystis sp. PCC 6803 and Synechocystis salina CCALA 192. Synechocystis sp. PCC 6803 cultivated with γ-butyrolakton accumulated co-polymer of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) the composition of the copolymer was 56 % of 4HB and 44 % of 3HB. The total amount of PHA, as well as yield of biomass, was lower than in control due to the toxic properties of γ-butyrolakton. Funding: This study was partly funded by the project GA19- 19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), a project I 4082-B25. This work was supported by Brno, Ph.D. Talent – Funded by the Brno City Municipality.

Keywords: co-polymer, cyanobacteria, PHA, synechocystis

Procedia PDF Downloads 206
856 Evaluation of the Irritation Potential of Three Topical Formulations of Minoxidil 2% Using Patch Test

Authors: Sule Pallavi, Shah Priyank, Thavkar Amit, Rohira Poonam, Mehta Suyog

Abstract:

Introduction: Minoxidil has been used topically for a long time to assist hair growth in the management of male androgenetic alopecia. The aim of this study was a comparative assessment of the irritation potential of three commercial formulations of minoxidil 2% topical solution in a human patch test. Methodology: The study was a non-randomized, double-blind, controlled, single-center study of 56 healthy adult Indian subjects. A 24-hour occlusive patch test was conducted with three formulations of minoxidil 2% topical solution. Products tested were aqueous-based minoxidil 2% (AnasureTM 2%, Sun Pharma, India – Brand A), alcohol-based minoxidil 2% (Brand B) and aqueous-based minoxidil 2% (Brand C). Isotonic saline 0.9% and 1% w/w sodium lauryl sulphate as a negative and positive control, respectively, were included. Patches were applied on the back, followed by removal after 24 hours. The Draize scale (0-4 points scale for erythema/dryness/wrinkles and for oedema) was used to evaluate and clinically score the skin reaction under constant artificial daylight 24 hours after the removal of the patches. The patch test was based on the principles outlined by Bureau of Indian Standards (BIS) (IS 4011:2018; Methods of Test for safety evaluation of Cosmetics-3rd revision). A mean combined score up to 2.0/8.0 indicates that a product is “non-irritant,” and a score between 2.0/8.0 and 4.0/8.0 indicates “mildly irritant” and a score above 4.0/8.0 indicates “irritant”. In case of any skin reaction that was observed, a follow-up was planned after one week to confirm recovery. Results: The 56 subjects who participated in the study had a mean age of 28.7 years (28 males and 28 females). The combined mean score ± standard deviation was: 0.09 ± 0.29 (Brand A), 0.29± 0.53 (Brand B), 0.30 ± 0.46 (Brand C), 3.25 ± 0.77 (positive control) and 0.02 ± 0.13 (negative control). This mean score of Brand A (Sun Pharma) was significantly lower than that of Brand B (p=0.016) and that of Brand C (p=0.004). The mean erythema score ± standard deviation was: 0.09 ± 0.29 (Brand A), 0.27 ± 0.49 (Brand B), 0.30 ± 0.46 (Brand C), 2.5 ± 0.66 (positive control) and 0.02 ± 0.13 (negative control). The mean erythema score of Brand A (Sun Pharma) was significantly lower than that of Brand B (p=0.019) and that of Brand C (p=0.004). Reactions that were observed 24 hours after patch removal subsided in a week’s time. Conclusion: Based on the human patch test as per the BIS, IS 4011:2018, all the three topical formulations of minoxidil 2% were found to be non-irritant. Brand A of 2% minoxidil (Sun Pharma) was found to be the least irritant than Brand B and Brand C based on the combined mean score and mean erythema score.

Keywords: erythema, irritation, minoxidil, patch test

Procedia PDF Downloads 86
855 Artificial Intelligence: Obstacles Patterns and Implications

Authors: Placide Poba-Nzaou, Anicet Tchibozo, Malatsi Galani, Ali Etkkali, Erwin Halim

Abstract:

Artificial intelligence (AI) is a general-purpose technology that is transforming many industries, working life and society by stimulating economic growth and innovation. Despite the huge potential of benefits to be generated, the adoption of AI varies from one organization to another, from one region to another, and from one industry to another, due in part to obstacles that can inhibit an organization or organizations located in a specific geographic region or operating in a specific industry from adopting AI technology. In this context, these obstacles and their implications for AI adoption from the perspective of configurational theory is important for at least three reasons: (1) understanding these obstacles is the first step in enabling policymakers and providers to make an informed decision in stimulating AI adoption (2) most studies have investigating obstacles or challenges of AI adoption in isolation with linear assumptions while configurational theory offers a holistic and multifaceted way of investigating the intricate interactions between perceived obstacles and barriers helping to assess their synergetic combination while holding assumptions of non-linearity leading to insights that would otherwise be out of the scope of studies investigating these obstacles in isolation. This study aims to pursue two objectives: (1) characterize organizations by uncovering the typical profiles of combinations of 15 internal and external obstacles that may prevent organizations from adopting AI technology, (2) assess the variation in terms of intensity of AI adoption associated with each configuration. We used data from a survey of AI adoption by organizations conducted throughout the EU27, Norway, Iceland and the UK (N=7549). Cluster analysis and discriminant analysis help uncover configurations of organizations based on the 15 obstacles, including eight external and seven internal. Second, we compared the clusters according to AI adoption intensity using an analysis of variance (ANOVA) and a Tamhane T2 post hoc test. The study uncovers three strongly separated clusters of organizations based on perceived obstacles to AI adoption. The clusters are labeled according to their magnitude of perceived obstacles to AI adoption: (1) Cluster I – High Level of perceived obstacles (N = 2449, 32.4%)(2) Cluster II – Low Level of perceived obstacles (N =1879, 24.9%) (3) Cluster III – Moderate Level of perceived obstacles (N =3221, 42.7%). The proposed taxonomy goes beyond the normative understanding of perceived obstacles to AI adoption and associated implications: it provides a well-structured and parsimonious lens that is useful for policymakers, AI technology providers, and researchers. Surprisingly, the ANOVAs revealed a “high level of perceived obstacles” cluster associated with a significantly high intensity of AI adoption.

Keywords: Artificial intelligence (AI), obstacles, adoption, taxonomy.

Procedia PDF Downloads 110
854 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology

Procedia PDF Downloads 395
853 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics

Authors: Amit Mallik, Anil K. Barik, Biswajit Pal

Abstract:

The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.

Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness

Procedia PDF Downloads 243
852 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases

Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar

Abstract:

Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.

Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases

Procedia PDF Downloads 160
851 Effects of Nanoencapsulated Echinacea purpurea Ethanol Extract on the Male Reproductive Function in Streptozotocin-Induced Diabetic Rats

Authors: Jia-Ling Ho, Xiu-Ru Zhang, Zwe-Ling Kong

Abstract:

Diabetes mellitus (DM) is a major health problem that affects patients’ life quality throughout the world due to its many complications. It characterized by chronic hyperglycemia with oxidative stress, which impaired male reproductive function. Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Echinacea purpurea ethanol extract (EE), which contain phenolic acid and isobutylamide, had been proven to have antidiabetic property. Silica-chitosan nanoparticles (Nano-CS) has drug delivery and controlled release properties. This study aims to investigate whether silica-chitosan nanoparticles encapsulated EE (Nano-EE) had more ameliorating male infertility by analyzing the effect of testicular FGF21. The Nano-EE was characterized before used to treatment the diabetic rat model. Male Sprague-Dawley (SD) rats were obtained and divided into seven groups. A group was no induced Streptozotocin (STZ), marked as normal group. Diabetic rats were induced into diabetes by STZ (33 mg/kg). A diabetic group was no treatment with sample (diabetic control group), and other groups were treatment by Nano-CS (465 mg/kg), Nano-EE (93, 279, 465 mg/kg), and metformin (Met) (200 mg/kg) used as reference drug for 7 weeks. Our results indicated that the average nanoparticle size and zeta potential of Nano-EE were 2630 nm and -21.3 mV, respectively. The encapsulation ratio of Nano-EE was about 70%. It also confirmed the antioxidative activity was unchanged by comparing the DPPH and ABTS scavenging of Nano-EE and EE. In vivo test, Nano-EE can improve the STZ induced hyperglycemia, insulin resistance, and plasma FGF21 levels. Nano-EE has increased sperm motility, mitochondria membrane potential (MMP), plasma testosterone level, and reduction of abnormal sperm, nitric oxide (NO), superoxide production as well as reactive oxygen species (ROS). In addition, in plasma antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD) was increased whereas pro-inflammatory cytokines TNF-α, and IL-1β were decreased. Further, in testis, protein content of FGF21, PGC-1α, and SIRT1 were improved. Nano-EE might improve diabetes-induced down-regulation of testicular FGF21 and SIRT1/PGC-1α signaling hence maintain spermatogenesis.

Keywords: diabetes mellitus, Echinacea purpurea, reproductive dysfunction, silica-chitosan nanoparticles

Procedia PDF Downloads 196
850 Summary of the Actual Conditions of SME Management Consultants

Authors: Takao Maeda, Tomofumi Tohara, Shigeaki Mishima

Abstract:

Focusing on the “SME management consultants” in Japan, this study intends (1) to clarify implications as to their self-actualization, motivation and (2) to revitalize SMEs, on which local economies depend. On the basis of these study purposes, the presenters conducted an interview survey of several SME management consultants and SME managers. This survey identified the current circumstances and challenges as follow: SME management consultants are high-level professionals who acquired very difficult national qualifications (examination pass rate 4%) to provide consultation and business analysis for SMEs. Nevertheless, only 20% of the qualified consultants run their business independently, while the rest (80%) are corporate employees as in-house consultants, the majority of whom belong to big companies. They acquired the qualification merely for the purpose of self-development. Therefore, they have few opportunities to demonstrate their expertise inside and outside their companies.On the other hand, the SMEs, which are to receive analysis and consultation from SME management consultants, constitute 99.7% of all industries, and are very important to local communities, for they sustain the economy and provide employment. SMEs used to be supported by the consultants in company management due to their scarce managerial resources compared with big companies. Nowadays, however, SMEs are regarded as the source of Japanese economic dynamism. To have the same degree of managerial skills as big companies, therefore, SMEs now need analysis and consultation by the consultants in more active ways, such as discovering and utilizing their dormant technologies. Partly because SME management consultants have not been fully utilized in Japan, the number of SMEs has been on a long-term downward trend since 1986. Utilizing expertise of the in-house consultants, who have rich experience in their big companies and deep knowledge regarding SMEs obtained through qualification, will potentially lead to revitalization of SMEs and consequently to economic growth in Japan. Through detailed analysis of the interview results, this study revealed short-term and long-term challenges regarding how to utilize SME management consultants. The most urgent issue is to study managerial approaches that will provide the consultants serving in big companies with more “opportunities to demonstrate their expertise.” The long-term issue is to enable the consultants to demonstrate their expertise in financial institutions, or financial supporter of SMEs, to examine farsighted and innovative financing strategy and criteria based on managers’ personalities and their business plans, instead of the conventional financing based on prompt fund collection.

Keywords: small and medium enterprise(SME), SME managemant consultant, self-actualization, motivation

Procedia PDF Downloads 414
849 Teaching Self-Advocacy Skills to Students With Learning Disabilities: The S.A.M.E. Program of Instruction

Authors: Dr. Rebecca Kimelman

Abstract:

Teaching students to self-advocate has become a central topic in special education literature and practice. However, many special education programs do not address this important skill area. To this end, I created and implemented the Self Advocacy Made Easy (S.A.M.E.) program of instruction, intended to enhance the self-advocacy skills of young adults with mild to moderate disabilities. The effectiveness of S.A.M.E., the degree to which self-advocacy skills were acquired and demonstrated by the students, the level of parental support, and the impact of culture on the process, and teachers’ beliefs and attitudes about the role of self-advocacy skills for their students were measured using action research that employed mixed methodology. Conducted at an overseas American International School, this action research study sought answers to these questions by providing an in-depth portrayal of the S.A.M.E. program, as well as the attitudes and perceptions of the stakeholders involved in the study (thirteen students, their parents, teachers and counsellors). The findings of this study were very positive. The S.A.M.E. program was found to be a valid and valuable instructional tool for teaching self-advocacy skills to students with learning disabilities and ADHD. The study showed participation in the S.A.M.E. program led to an increased understanding of the important elements of self-advocacy, an increase in students’ skills and abilities to self-advocate, and a positive increase in students’ feelings about themselves. Inclusion in the Student-Led IEP meetings, an authentic student assessment within the S.A.M.E. program, also yielded encouraging results, including a higher level of ownership of one’s profile and learning needs, a higher level of student engagement and participation in the IEP meeting, and a growing student awareness of the relevance of the document and the IEP process to their lives. Without exception, every parent believed that participating in the Student-Led IEP led to a growth in confidence in their children, including that it taught them how to ‘own’ their disability and an improvement in their communication skills. Teachers and counsellors that participated in the study felt the program was worthwhile, and led to an increase in the students’ ability to acknowledge their learning profile and to identify and request the accommodations (such as extended time or use of a calculator) they need to overcome or work around their disability. The implications for further research are many, and include an examination of the degree to which participation in S.A.M.E. fosters student achievement, the long-term effects of participation in the program, and the degree to which student participation in the Student-Led IEP meeting increases parents’ level of understanding and involvement.

Keywords: self-advocacy, learning disabilities, ADHD, student-led IEP process

Procedia PDF Downloads 57
848 In vitro Callus Production from Lantana Camara: A Step towards Biotransformation Studies

Authors: Maged El-Sayed Mohamed

Abstract:

Plant tissue culture practices are presented nowadays as the most promising substitute to a whole plant in the terms of secondary metabolites production. They offer the advantages of high production, tunability and they have less effect on plant ecosystems. Lantana camara is a weed, which is common all over the world as an ornamental plant. Weeds can adapt to any type of soil and climate due to their rich cellular machinery for secondary metabolites’ production. This characteristic is found in Lantana camara as a plant of very rich diversity of secondary metabolites with no dominant class of compounds. Aim: This trait has encouraged the author to develop tissue culture experiments for Lantana camara to be a platform for production and manipulation of secondary metabolites through biotransformation. Methodology: The plant was collected in its flowering stage in September 2014, from which explants were prepared from shoot tip, auxiliary bud and leaf. Different types of culture media were tried as well as four phytohormones and their combinations; NAA, 2,4-D, BAP and kinetin. Explants were grown in dark or in 12 hours dark and light cycles at 25°C. A metabolic profile for the produced callus was made and then compared to the whole plant profile. The metabolic profile was made using GC-MS for volatile constituents (extracted by n-hexane) and by HPLC-MS and capillary electrophoresis-mass spectrometry (CE-MS) for non-volatile constituents (extracted by ethanol and water). Results: The best conditions for the callus induction was achieved using MS media supplied with 30 gm sucrose and NAA/BAP (1:0.2 mg/L). Initiation of callus was favoured by incubation in dark for 20 day. The callus produced under these conditions showed yellow colour, which changed to brownish after 30 days. The rate of callus growth was high, expressed in the callus diameter, which reached to 1.15±0.2 cm in 30 days; however, the induction of callus delayed for 15 days. The metabolic profile for both volatile and non-volatile constituents of callus showed more simple background metabolites than the whole plant with two new (unresolved) peaks in the callus’ nonvolatile constituents’ chromatogram. Conclusion: Lantana camara callus production can be itself a source of new secondary metabolites and could be used for biotransformation studies due to its simple metabolic background, which allow easy identification of newly formed metabolites. The callus production gathered the simple metabolic background with the rich cellular secondary metabolite machinery of the plant, which could be elicited to produce valuable medicinally active products.

Keywords: capillary electrophoresis-mass spectrometry, gas chromatography, metabolic profile, plant tissue culture

Procedia PDF Downloads 394
847 Flipping the Script: Opportunities, Challenges, and Threats of a Digital Revolution in Higher Education

Authors: James P. Takona

Abstract:

In a world that is experiencing sharp digital transformations guided by digital technologies, the potential of technology to drive transformation and evolution in the higher is apparent. Higher education is facing a paradigm shift that exposes susceptibilities and threats to fully online programs in the face of post-Covid-19 trends of commodification. This historical moment is likely to be remembered as a critical turning point from analog to digital degree-focused learning modalities, where the default became the pivot point of competition between higher education institutions. Fall 2020 marks a significant inflection point in higher education as students, educators, and government leaders scrutinize higher education's price and value propositions through the new lens of traditional lecture halls versus multiple digitized delivery modes. Online education has since tiled the way for a pedagogical shift in how teachers teach and students learn. The incremental growth of online education in the west can now be attributed to the increasing patronage among students, faculty, and institution administrators. More often than not, college instructors assume paraclete roles in this learning mode, while students become active collaborators and no longer passive learners. This paper offers valuable discernments into the threats, challenges, and opportunities of a massive digital revolution in servicing degree programs. To view digital instruction and learning demands for instructional practices that revolve around collaborative work, engaging students in learning activities, and an engagement that promotes active efforts to solicit strong connections between course activities and expected learning pace for all students. Appropriate digital technologies demand instructors and students need prior solid skills. Need for the use of digital technology to support instruction and learning, intelligent tutoring offers great promise, and failures at implementing digital learning may not improve outcomes for specific student populations. Digital learning benefits students differently depending on their circumstances and background and those of the institution and/or program. Students have alternative options, access to the convenience of learning anytime and anywhere, and the possibility of acquiring and developing new skills leading to lifelong learning.

Keywords: digi̇tized learning, digital education, collaborative work, high education, online education, digitize delivery

Procedia PDF Downloads 97
846 An Assessment of Nodulation and Nitrogen Fixation of Lessertia Frutescens Plants Inoculated with Rhizobial Isolates from the Cape Fynbos

Authors: Mokgadi Miranda Hlongwane, Ntebogeng Sharon Mokgalaka, Felix Dapare Dakora

Abstract:

Lessertia (L.) frutescens (syn. Sutherlandia frutescens) is a leguminous medicinal plant indigenous to South Africa. Traditionally, L. frutescens has been used to treat cancer, diabetes, epilepsy, fever, HIV, stomach problems, wounds and other ailments. This legume is endemic to the Cape fynbos, with large populations occurring wild and cultivated in the Cape Florist Region. Its widespread distribution in the Western Cape, Northern Cape, Eastern Cape and Kwazulu-Natal is linked to its increased use as a phytomedicine in the treatment of various diseases by traditional healers. The frequent harvesting of field plants for use as a medicine has made it necessary to undertake studies towards the conservation of Lessertia frutescens. As a legume, this species can form root nodules and fix atmospheric N₂ when in symbiosis with soil bacteria called rhizobia. So far, however, few studies (if any) have been done on the efficacy and diversity of native bacterial symbionts nodulating L. frutescens in South Africa. The aim of this project was to isolate and characterize L. frutescens-nodulating bacteria from five different locations in the Western Cape Province. This was done by trapping soil rhizobia using rhizosphere soil suspension to inoculate L. frutescens seedlings growing in sterilized sand and receiving sterile N-free Hoagland nutrient solution under glasshouse conditions. At 60 days after planting, root nodules were harvested from L. frutescens plants, surface-sterilized, macerated, and streaked on yeast mannitol agar (YMA) plates and incubated at 28 ˚C for observation of bacterial growth. The majority of isolates were slow-growers that took 6-14 days to appear on YMA plates. However, seven isolates were fast-growers, taking 2-4 days to appear on YMA plates. Single-colony cultures of the isolates were assessed for their ability to nodulate L. frutescens as a homologous host under glasshouse conditions. Of the 92 bacterial isolates tested, 63 elicited nodule formation on L. frutescens. Symbiotic effectiveness varied markedly between and among test isolates. There were also significant (p≤0.005) differences in nodulation, shoot biomass, photosynthetic rates, leaf transpiration and stomatal conductance of L. frutescens plants inoculated with the test isolates, which is an indication of their functional diversity.

Keywords: lessertia frutescens, nodulating, rhizobia, symbiotic effectiveness

Procedia PDF Downloads 198
845 Biodeterioration of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

This chapter investigates the biodeterioration of parks in the UK caused by lichens, focusing on Campbell Park and Great Linford Manor Park in Milton Keynes. The study first isolates and identifies potent biodeteriogens responsible for potential biodeterioration in these parks, enumerating and recording different classes and genera of lichens known for their biodeteriorative properties. It then examines the implications of lichens on biodeterioration at historic sites within these parks, considering impacts on historic structures, the environment, and associated health risks. Conservation strategies and preventive measures are discussed before concluding.Lichens, characterized by their symbiotic association between a fungus and an alga, thrive on various surfaces including building materials, soil, rock, wood, and trees. The fungal component provides structure and protection, while the algal partner performs photosynthesis. Lichens collected from the park sites, such as Xanthoria, Cladonia, and Arthonia, were observed affecting the historic walls, objects, and trees. Their biodeteriorative impacts were visible to the naked eye, contributing to aesthetic and structural damage. The study highlights the role of lichens as bioindicators of pollution, sensitive to changes in air quality. The presence and diversity of lichens provide insights into the air quality and pollution levels in the parks. However, lichens also pose health risks, with certain species causing respiratory issues, allergies, skin irritation, and other toxic effects in humans and animals. Conservation strategies discussed include regular monitoring, biological and chemical control methods, physical removal, and preventive cleaning. The study emphasizes the importance of a multifaceted, multidisciplinary approach to managing lichen-induced biodeterioration. Future management practices could involve advanced techniques such as eco-friendly biocides and self-cleaning materials to effectively control lichen growth and preserve historic structures. In conclusion, this chapter underscores the dual role of lichens as agents of biodeterioration and indicators of environmental quality. Comprehensive conservation management approaches, encompassing monitoring, targeted interventions, and advanced conservation methods, are essential for preserving the historic and natural integrity of parks like Campbell Park and Great Linford Manor Park.

Keywords: biodeterioration, historic parks, algae, UK

Procedia PDF Downloads 39
844 The Effects of Nano Zerovalent Iron (nZVI) and Magnesium Oxide Nanoparticles on Methane Production during Anaerobic Digestion of Waste Activated Sludge

Authors: Passkorn Khanthongthip, John T. Novak

Abstract:

Many studies have been reported that the nZVI and MgO NPs were often found in waste activated sludge (WAS). However, little is known about the impact of those NPs on WAS stabilization. The aims of this study were to investigate the effects of both NPs on WAS anaerobic digestion for methane production and to examine the change of metanogenic population under those different environments using qPCR. Four dosages (2, 50, 100, and 200 mg/g-TSS) of MgO NPs were added to four different bottles containing WAS to investigate the impact of MgO NPs on methane production during WAS anaerobic digestion. The effects of nZVI on methane production during WAS anaerobic digestion were also conducted in another four bottles using the same methods described above except that the MgO NPs were replaced by nZVI. A bottle of WAS anaerobic digestion without nanoparticles addition was also operated to serve as a control. It was found that the relative amounts, compared to the control system, of methane production in each WAS anaerobic digestion bottle adding 2, 50, 100, 200 mg/gTSS MgO NPs were 98, 62, 28, and 14 %, respectively. This suggests that higher MgO NPs resulted in lower methane production. The data of batch test for the effects of corresponding released Mg2+ indicated that 50 mg/gTSS MgO NPs or higher could inhibit methane production at least 25%. Moreover, the volatile fatty acid (VFA) concentration was 328, 384, 928, 3,684, and 7,848 mg/L for the control and four WAS anaerobic digestion bottles with 2, 50, 100, 200 mg/gTSS MgO NPs addition, respectively. Higher VFA concentration could reduce pH and subsequently decrease methanogen growth, resulting in lower methane production. The relative numbers of total gene copies of methanogens analyzed from samples taken from WAS anaerobic digestion bottles were approximately 99, 68, 38, and 24 % of control for the addition of 2, 50, 100, and 200 mg/gTSS, respectively. Obviously, the more MgO NPs appeared in sludge anaerobic digestion system, the less methanogens remained. In contrast, the relative amount of methane production found in another four WAS anaerobic digestion bottles adding 2, 50, 100, and 200 mg/gTSS nZVI were 102, 128, 112, and 104 % of the control, respectively. The measurement of methanogenic population indicated that the relative content of methanogen gene copies were 101, 132, 120, and 112 % of those found in control, respectively. Additionally, the cumulative VFA was 320, 234, 308, and 330 mg/L, respectively. This reveals that nZVI addition could assist to increase methanogenic population. Higher amount of methanogen accelerated VFA degradation for greater methane production, resulting in lower VFA accumulation in digesters. Moreover, the data for effects of corresponding released Fe2+ conducted by batch tests suggest that the addition of approximately 50 mg/gTSS nZVI increased methane production by 20%. In conclusion, the presence of MgO NPs appeared to diminish the methane production during WAS anaerobic digestion. Higher MgO NPs dosages resulted in more inhibition on methane production. In contrast, nZVI addition promoted the amount of methanogenic population which facilitated methane production.

Keywords: magnesium oxide nanoparticles, methane production, methanogenic population, nano zerovalent iron

Procedia PDF Downloads 296
843 Sertraline Chronic Exposure: Impact on Reproduction and Behavior on the Key Benthic Invertebrate Capitella teleta

Authors: Martina Santobuono, Wing Sze Chan, Elettra D'Amico, Henriette Selck

Abstract:

Chemicals in modern society are fundamental in many different aspects of daily human life. We use a wide range of substances, including polychlorinated compounds, pesticides, plasticizers, and pharmaceuticals, to name a few. These compounds are excessively produced, and this has led to their introduction to the environment and food resources. Municipal and industrial effluents, landfills, and agricultural runoffs are a few examples of sources of chemical pollution. Many of these compounds, such as pharmaceuticals, have been proven to mimic or alter the performance of the hormone system, thus disrupting its normal function and altering the behavior and reproductive capability of non-target organisms. Antidepressants are pharmaceuticals commonly detected in the environment, usually in the range of ng L⁻¹ and µg L⁻¹. Since they are designed to have a biological effect at low concentrations, they might pose a risk to the native species, especially if exposure lasts for long periods. Hydrophobic antidepressants, like the selective serotonin reuptake inhibitor (SSRI) Sertraline, can sorb to the particles in the water column and eventually accumulate in the sediment compartment. Thus, deposit-feeding organisms may be at particular risk of exposure. The polychaete Capitella teleta is widespread in estuarine organically enriched sediments, being a key deposit-feeder involved in geochemistry processes happening in sediments. Since antidepressants are neurotoxic chemicals and endocrine disruptors, the aim of this work was to test if sediment-associated Sertraline impacts burrowing- and feeding behavior as well as reproduction capability in Capitella teleta in a chronic exposure set-up, which could better mimic what happens in the environment. 7 days old juveniles were selected and exposed to different concentrations of Sertraline for an entire generation until the mature stage was reached. This work was able to show that some concentrations of Sertraline altered growth and the time of first reproduction in Capitella teleta juveniles, potentially disrupting the population’s capability of survival. Acknowledgments: This Ph.D. position is part of the CHRONIC project “Chronic exposure scenarios driving environmental risks of Chemicals”, which is an Innovative Training Network (ITN) funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions (MSCA).

Keywords: antidepressants, Capitella teleta, chronic exposure, endocrine disruption, sublethal endpoints, neurotoxicity

Procedia PDF Downloads 98
842 Souk Waqif in Old Doha, Qatar: Cultural Heritage, Urban Regeneration, and Sustainability

Authors: Djamel Boussaa

Abstract:

Cultural heritage and tourism have become during the last two decades dynamic areas of development in the world. The idea of heritage is crucial to the critical decision-making process as to how irreplaceable resources are to be utilized by people of the present or conserved for future generations in a fast changing world. In view of the importance of ‘heritage’ to the development of a tourist destination the emphasis on developing appropriate adaptive reuse strategies cannot be overemphasized. In October 1999, the 12th general assembly of the ICOMOS in Mexico stated, that in the context of sustainable development, two interrelated issues need urgent attention, cultural tourism and historic towns and cities. These two issues underscore the fact that historic resources are non-renewable, belonging to all of humanity. Without adequate adaptive reuse actions to ensure a sustainable future for these historic resources, may lead to their complete vanishing. The growth of tourism and its role in dispersing cultural heritage to everyone is developing rapidly. According to the World Tourism Organization, natural and cultural heritage resources are and will remain motivating factors for travel in the foreseeable future. According to the experts, people choose travel destinations where they can learn about traditional and distinct cultures in their historic context. The Qatar rich urban heritage is now being recognized as a valuable resource for future development. This paper discusses the role of cultural heritage and tourism in regenerating Souk Waqif, and consequently the city of Doha. Therefore, in order to use cultural heritage wisely, it will be necessary to position heritage as an essential element of sustainable development, giving particular attention to cultural heritage and tourism. The research methodology is based on an empirical survey of the situation, based on several visits, meetings and interviews with the local heritage players. The rehabilitation project initiated since 2004 will be examined and assessed. Therefore, there is potential to assess the situation and propose directions for a sustainable future to this historic landmark. Conservation for the sake of conservation appears to be an outdated concept. Many irreplaceable natural and cultural sites are being compromised because local authorities are not giving economic consideration to the value of rehabilitating such sites. The question to be raised here is 'How can cultural heritage be used wisely for tourism without compromising its social sustainability within the emerging global world?'

Keywords: cultural heritage, tourism, regeneration, economy, social sustainability

Procedia PDF Downloads 423
841 Prospects of Regenerative Medicine with Human Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Sheets: Achievements and Future Outlook in Clinical Trials for Myopic Chorioretinal Atrophy

Authors: Norimichi Nagano, Yoshio Hirano, Tsutomu Yasukawa

Abstract:

Mesenchymal stem cells are thought to confer neuroprotection, facilitate tissue regeneration and exert their effects on retinal degenerative diseases, however, adverse events such as proliferative vitreoretinopathy and preretinal membrane disease associated with cell suspension transplantation have also been reported. We have recently developed human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) sheets through our proprietary sheet transformation technique, which could potentially mitigate these adverse events. To clarify the properties of our adMSC sheets named PAL-222, we performed in vitro studies such as viability testing, cytokine secretions by ELISA, immunohistochemical study, and migration assay. The viability of the cells exceeded 70%. Vascular Endothelial Growth Factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF), which are quite important cytokines for the retinal area, were observed. PAL-222 expressed type I collagen, a strength marker, type IV collagen, a marker of the basement membrane, and elastin, an elasticity marker. Finally, the migration assay was performed and showed negative, which means that PAL-222 is stably kept in the topical area and does not come to pieces. Next, to evaluate the efficacy in vivo, we transplanted PAL-222 into the subretinal space of the eye of Royal College of Surgeons rats with congenital retinal degeneration and assessed it for three weeks after transplantation. We confirmed that PAL-222 suppressed the decrease in the thickness of the outer nuclear layer, which means that the photoreceptor protective effect treated with PAL-222 was significantly higher than that in the sham group. (p < 0.01). This finding demonstrates that PAL-222 showed their retinoprotective effect in a model of congenital retinal degeneration. As the study suggested the efficacy of PAL-222 in both in vitro and in vivo studies, we are presently engaged in clinical trials of PAL-222 for myopic chorioretinal atrophy, which is one of the retinal degenerative diseases, for the purpose of regenerative medicine.

Keywords: cell sheet, clinical trial, mesenchymal stem cell, myopic chorioretinal atrophy

Procedia PDF Downloads 99
840 The Effectiveness of an Injury Prevention Workshop in Increasing Knowledge and Understanding in Grass-Root Youth Coaches

Authors: Mark De Ste Croix, Jonathan Hughes, Francisco Ayala, Michal Lehnert

Abstract:

There are well-known challenges to implementing injury prevention training for youth players but no data are available on the knowledge and understanding of deliverers of such programmes at grass root level. To increase adoption and adherence to such programmes coach knowledge and understanding of injury risk and prevention is essential. Therefore, the purpose of this study was to examine grass-root coaches knowledge and understanding of injury risk and prevention in youth players. 68 grass root coaches (18 females and 50 males) who were attending a one-day injury prevention workshop completed a modified validated questionnaire exploring knowledge and understanding of injury risk and prevention in youth players. Only 59% of coaches agreed that youth players are at a high risk of suffering an injury. There were high levels of agreement that injuries can have negative impacts on team performance (75%) and can cause physical problems in later life (85%), however only around half of coaches felt that injuries affect youth players current quality of life (59%). There was strong agreement that it is possible to prevent injuries in youth players (84%), but coaches were generally unaware of programs to help prevent injuries (84%), and only 9% used some form of injury prevention program. Despite this, nearly all coaches felt that their coaching could benefit from a greater understanding of growth and maturation (91%), injury prevention programmes (91%) and specific exercises (93%) for youth athletes. 17% of coaches rated their knowledge of injury prevention as good/very good at the start of the workshop and this increased to 94% at the end of the workshop. 62% of coaches identified their attitude towards injury prevention as indifferent at the start of the workshop compared with only 1% at the end. Only 14% of coaches at the start of the workshop were confident to deliver an injury prevention session but 83% stated they were confident by the end of the workshop. Finally, 98% of coaches felt that the workshop provided them with the confidence and the knowledge to deliver an injury prevention session and 98% suggested that they would implement injury prevention into their coaching. These data suggest that there is a lack of understanding of grass root coaches that children are a high-risk group for injuries, and that such injuries impact on current quality of life. Despite understanding that injuries can be prevented most grass root coaches do not have the knowledge to implement injury prevention into their coaching and very few do. There is a common consensus amongst these coaches that a greater understanding of such programmes will enhance their coaching. The injury prevention workshop appears to have increased the knowledge and changed the attitude of coaches towards injury prevention. All coaches felt that the workshop provided them with the tools to adopt, implement and deliver injury prevention in their coaching. These data highlight that there is a clear need for education regarding injury risk and prevention to be embedded within the coach education pathway, especially at grass root level.

Keywords: coach education, injury prevention, knowledge, and understanding, youth

Procedia PDF Downloads 172
839 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling

Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer

Abstract:

The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.

Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor

Procedia PDF Downloads 286
838 Evaluating the Impact of Judicial Review of 2003 “Radical Surgery” Purging Corrupt Officials from Kenyan Courts

Authors: Charles A. Khamala

Abstract:

In 2003, constrained by an absent “rule of law culture” and negative economic growth, the new Kenyan government chose to pursue incremental judicial reforms rather than comprehensive constitutional reforms. President Mwai Kibaki’s first administration’s judicial reform strategy was two pronged. First, to implement unprecedented “radical surgery,” he appointed a new Chief Justice who instrumentally recommended that half the purportedly-corrupt judiciary should be removed by Presidential tribunals of inquiry. Second, the replacement High Court judges, initially, instrumentally-endorsed the “radical surgery’s” administrative decisions removing their corrupt predecessors. Meanwhile, retention of the welfare-reducing Constitution perpetuated declining public confidence in judicial institutions culminating in refusal by the dissatisfied opposition party to petition the disputed 2007 presidential election results, alleging biased and corrupt courts. Fatefully, widespread post-election violence ensued. Consequently, the international community prompted the second Kibaki administration to concede to a new Constitution. Suddenly, the High Court then adopted a non-instrumental interpretation to reject the 2003 “radical surgery.” This paper therefore critically analyzes whether the Kenyan court’s inconsistent interpretations–pertaining to the constitutionality of the 2003 “radical surgery” removing corruption from Kenya’s courts–was predicated on political expediency or human rights principles. If justice “must also seen to be done,” then pursuit of the CJ’s, Judicial Service Commission’s and president’s political or economic interests must be limited by respect for the suspected judges and magistrates’ due process rights. The separation of powers doctrine demands that the dismissed judges should have a right of appeal which entails impartial review by a special independent oversight mechanism. Instead, ignoring fundamental rights, Kenya’s new Supreme Court’s interpretation of another round of vetting under the new 2010 Constitution, ousts the High Court’s judicial review jurisdiction altogether, since removal of judicial corruption is “a constitutional imperative, akin to a national duty upon every judicial officer to pave way for judicial realignment and reformulation.”

Keywords: administrative decisions, corruption, fair hearing, judicial review, (non) instrumental

Procedia PDF Downloads 489
837 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model

Authors: Jihane Bouabid

Abstract:

The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.

Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model

Procedia PDF Downloads 68
836 Epiphytic Growth on Filamentous Bacteria Found in Activated Sludge: A Morphological Approach

Authors: Thobela Conco, Sheena Kumari, Thor Stenstrom, Simona Rosetti, Valter Tandoi, Faizal Bux

Abstract:

Filamentous bacteria are well documented as causative agents of bulking and foaming in the biological wastewater treatment process. These filamentous bacteria are however closely associated with other non-filamentous organism forming a micro-niche. Among these specific epiphytic bacteria attach to filaments in the consortium of organisms that make up the floc. Neither the eco-physiological role of the epiphytes nor the nature of the interaction between the epiphytic bacteria and the filament hosts they colonize is well understood and in need of in-depth investigations. The focus of this presentation is on the interaction between the epiphytic bacteria and the filament host. Samples from the activated sludge treatment have been repeatedly collected from several wastewater treatment plants in KwaZulu Natal. Extensive investigations have been performed with SEM and TEM electron microscopy, Polarized Light Microscopy with Congo red staining, and Thioflavin T staining to document the interaction. SEM was used to document the morphology of both the filament host and their epiphytes counterparts with the focus on the interface/point of contact between the two, while the main focus of the TEM investigations with the higher magnification aimed to document the ultra-structure features of two organisms relating to the interaction. The interaction of the perpendicular attachment partly seems to be governed by the physiological status of the filaments. The attachment further seems to trigger a response in the filaments with distinct internal visible structures at the attachment sites. It is postulated that these structures most likely are amyloid fibrils. Amyloid fibrils may play an overarching role in different types of attachments and has earlier been noted to play a significant role in biofilm formation in activated sludge. They also play a medical role in degenerative diseases such as Alzheimer’s and Diabetes. Further studies aims to define the eco-physiological role of amyloid fibrils in filamentous bacteria, based on their observed presence at interaction sites in this study. This will also relate to additional findings where selectivity within the species of epiphytes attaching to the selected filaments has been noted. The practical implications of the research findings is still to be determined, but the ecophysiological interaction between two closely associated species or groups may have significant impact in the future understanding of wastewater treatment processes and broaden existing knowledge on population dynamics.

Keywords: activated sludge, amyloid proteins, epiphytic bacteria, filamentous bacteria

Procedia PDF Downloads 430
835 A Close Study on the Nitrate Fertilizer Use and Environmental Pollution for Human Health in Iran

Authors: Saeed Rezaeian, M. Rezaee Boroon

Abstract:

Nitrogen accumulates in soils during the process of fertilizer addition to promote the plant growth. When the organic matter decomposes, the form of available nitrogen produced is in the form of nitrate, which is highly mobile. The most significant health effect of nitrate ingestion is methemoglobinemia in infants under six months of age (blue baby syndrome). The mobile nutrients, like nitrate nitrogen, are not stored in the soil as the available forms for the long periods and in large amounts. It depends on the needs for the crops such as vegetables. On the other hand, the vegetables will compete actively for nitrate nitrogen as a mobile nutrient and water. The mobile nutrients must be shared. The fewer the plants, the larger this share is for each plant. Also, this nitrate nitrogen is poisonous for the people who use these vegetables. Nitrate is converted to nitrite by the existing bacteria in the stomach and the Gastro-Intestinal (GI) tract. When nitrite is entered into the blood cells, it converts the hemoglobin to methemoglobin, which causes the anoxemia and cyanosis. The increasing use of pesticides and chemical fertilizers, especially the fertilizers with nitrates compounds, which have been common for the increased production of agricultural crops, has caused the nitrate pollution in the (soil, water, and environment). They have caused a lot of damage to humans and animals. In this research, the nitrate accumulation in different kind of vegetables such as; green pepper, tomatoes, egg plants, watermelon, cucumber, and red pepper were observed in the suburbs of Mashhad, Neisabour, and Sabzevar cities. In some of these cities, the information forms of agronomical practices collected were such as; different vegetable crops fertilizer recommendations, varieties, pesticides, irrigation schedules, etc., which were filled out by some of our colleagues in the research areas mentioned above. Analysis of the samples was sent to the soil and water laboratory in our department in Mashhad. The final results from the chemical analysis of samples showed that the mean levels of nitrates from the samples of the fruit crops in the mentioned cities above were all lower than the critical levels. These fruit crop samples were in the order of: 35.91, 8.47, 24.81, 6.03, 46.43, 2.06 mg/kg dry matter, for the following crops such as; tomato, cucumber, eggplant, watermelon, green pepper, and red pepper. Even though, this study was conducted with limited samples and by considering the mean levels, the use of these crops from the nutritional point of view will not cause the poisoning of humans.

Keywords: environmental pollution, human health, nitrate accumulations, nitrate fertilizers

Procedia PDF Downloads 251
834 Diversity and Distribution Ecology of Coprophilous Mushrooms of Family Psathyrellaceae from Punjab, India

Authors: Amandeep Kaur, Ns Atri, Munruchi Kaur

Abstract:

Mushrooms have shaped our environment in ways that we are only beginning to understand. The weather patterns, topography, flora and fauna of Punjab state in India create favorable growing conditions for thousands of species of mushrooms, but the complete region was unexplored when it comes to coprophilous mushrooms growing on herbivorous dung. Coprophilous mushrooms are the most specialized fungi ecologically, which germinate and grow directly on different types of animal dung or on manured soil. In the present work, the diversity of coprophilous mushrooms' of Family Psathyrellaceae of the order Agaricales is explored, their relationship to the human world is sketched out, and their supreme significance to life on this planet is revealed. During the investigation, different dung localities from 16 districts of Punjab state have been explored for the collection of material. The macroscopic features of the collected mushrooms were documented on the Field key. The hand cut sections of the various parts of carpophore, such as pileus, gills, stipe and the basidiospores details, were studied microscopically under different magnification. Various authentic publications were consulted for the identification of the investigated taxa. The classification, authentic names and synonyms of the investigated taxa are as per the latest version of Dictionary of Fungi and the MycoBank. The present work deals with the taxonomy of 81 collections belonging to 39 species spread over 05 coprophilous genera, namely Psathyrella, Panaeolus, Parasola, Coprinopsis, and Coprinellus of family Psathyrellaceae. In the text, the investigated taxa have been arranged as they appear in the key to the genera and species investigated. In this work, have been thoroughly examined for their macroscopic, microscopic, ecological, and chemical reaction details. The authors dig deeper to give indication of their ecology and the dung type where they can be obtained. Each taxon is accompanied by a detailed listing of its prominent features and an illustration with habitat photographs and line drawings of morphological and anatomical features. Taxa are organized as per their status in the keys, which allow easy recognition. All the taxa are compared with similar taxa. The study has shown that dung is an important substrate which serves as a favorable niche for the growth of a variety of mushrooms. This paper shows an insight what short-lived coprophilous mushrooms can teach us about sustaining life on earth!

Keywords: abundance, basidiomycota, biodiversity, seasonal availability, systematics

Procedia PDF Downloads 71
833 Testing of Populations of Selected Fungal Pathogens of Cereals for Resistance to Fungicides

Authors: Martina Čapková

Abstract:

Today, it is essential to ensure effective protection of cultivated cereal crops against fungal pathogens, which are one of the main factors limiting the yield and quality of cereal crops worldwide. The economic impact of losses caused by the emergence of resistant pathogen populations to fungicides is significant and it is therefore essential to seek effective strategies to protect against the establishment and emergence of resistant populations. In this study, the susceptibility analysis of fungal pathogens to different fungicidal agents was carried out. The results showed variability in the efficacy of fungicidal agents against the pathogens and suggest the need to reconsider the use of certain agents in crop protection. The efficacy of a total of five fungicidal active ingredients (fluxapyroxad, azoxystrobin, fenpicoxamid, prothioconazole, mefentrifluconazole) was tested at different concentrations on a total of 236 isolates of the pathogens Monographella nivalis, Oculimacula yallundae, Zymoseptoria tritici and Ramularia collo-cygni. The hypothesis of this work, based on the assumption of the existence of variation in the susceptibility of pathogens to fungicides, was confirmed. The aim was to determine the level of susceptibility of the selected fungal pathogen isolates of cereal crops to commonly used fungicidal agents. The fungicide with the highest proportion of individuals showing lower susceptibility (EC50 > 0.5 µg/ml) was azoxystrobin. The EC50 value refers to the effective concentration of the fungicidal agent inhibiting mycelial growth by 50%. Most of the Monographella nivalis isolates (94.83%) showed resistance to azoxystrobin, while they did not show resistance to prothioconazole and only 6.78% of the isolates were resistant to fenpicoxamide. Isolates of the pathogen Oculimacula yallundae showed resistance neither to prothioconazole nor to fluxapyroxad. The pathogen Zymoseptoria tritici showed the highest level of variability in fungicide resistance, with isolates showing no resistance to fenpicoxamide, while 85.51% of the isolates showed resistance to azoxystrobin. The pathogen Ramularia collo-cygni showed the highest level of resistance to all the fungicidal active ingredients tested. Overall, the study provides important insights for optimising cereal crop protection strategies and reducing the risk of fungal pathogen resistance to fungicides. However, it is necessary to continuously monitor the occurrence of resistant isolates in pathogen populations and to investigate new control methods and adapt them to changing agricultural conditions.

Keywords: wheat, barley, diseases, protection, fungicides, fungicide resistance, monitoring

Procedia PDF Downloads 21
832 Private Technology Parks–The New Engine for Innovation Development in Russia

Authors: K. Volkonitskaya, S. Lyapina

Abstract:

According to the National Monitoring Centre of innovation infrastructure, scientific and technical activities and regional innovation systems by December 2014. 166 technology parks were established in Russia. Comparative analysis of technological parks performance in Russia, the USA, Israel and the European Union countries revealed significant reduction of key performance indicators in Russian innovation infrastructure institutes. The largest deviations were determined in the following indicators: new products and services launched, number of companies and jobs, amount of venture capital invested. Lower performance indicators of Russian technology parks can be partly explained by slack demand for national high-tech products and services, lack of qualified specialists in the sphere of innovation management and insufficient cooperation between different innovation infrastructure institutes. In spite of all constraints in innovation segment of Russian economy in 2010-2012 private investors for the first time proceeded to finance building of technological parks. The general purpose of the research is to answer two questions: why despite the significant investment risks private investors continue to implement such comprehensive infrastructure projects in Russia and is business model of private technological park more efficient than strategies of state innovation infrastructure institutes? The goal of the research was achieved by analyzing business models of private technological parks in Moscow, Kaliningrad, Astrakhan and Kazan. The research was conducted in two stages: the on-line survey of key performance indicators of private and state Russian technological parks and in-depth interviews with top managers and investors, who have already build private technological parks in by 2014 or are going to complete investment stage in 2014-2016. The results anticipated are intended to identify the reasons of efficient and inefficient technological parks performance. Furthermore, recommendations for improving the efficiency of state technological and industrial parks were formulated. Particularly, the recommendations affect the following issues: networking with other infrastructural institutes, services and infrastructure provided, mechanisms of public-private partnership and investment attraction. In general intensive study of private technological parks performance and development of effective mechanisms of state support can have a positive impact on the growth rates of the number of Russian technological, industrial and science parks.

Keywords: innovation development, innovation infrastructure, private technology park, public-private partnership

Procedia PDF Downloads 440
831 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 86
830 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions

Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk

Abstract:

Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.

Keywords: sit-ski, aerodynamics, CFD, crosswind effects

Procedia PDF Downloads 67
829 Interlinkages and Impacts of the Indian Ocean on the Nile River

Authors: Zeleke Ayalew Alemu

Abstract:

Indian Ocean and the Nile River play significant roles in shaping the hydrological and ecological systems of the regions they traverse. This study explores the interlinkages and impacts of the Indian Ocean on the Nile River, highlighting key factors such as water flow, nutrient distribution, climate patterns, and biodiversity. The Indian Ocean serves as a major source of moisture for the Nile River, contributing to its annual flood cycle and sustaining the river's ecosystem. The Indian Ocean's monsoon winds influence the amount of rainfall received in East Africa, which directly impacts the Nile's water levels. These monsoonal patterns create a vital connection between the Indian Ocean and the Nile, affecting agricultural productivity, freshwater availability, and overall river health. The Indian Ocean also influences the nutrient levels in the Nile River. Coastal upwelling driven by oceanic currents brings nutrient-rich waters from the depths of the ocean to the surface. These nutrients are transported by ocean currents towards the Red Sea and subsequently enter the Nile. This influx of nutrients supports the growth of plankton, which forms the basis of the river's food web and sustains various aquatic species. Additionally, the Indian Ocean's climate patterns, such as El Niño and Indian Ocean Dipole events, exert influence on the Nile River basin. El Niño, for example, can result in drought conditions, reduced precipitation, and altered river flows, impacting agricultural activities and water resource management along the Nile. The Indian Ocean Dipole events can influence the rainfall distribution in East Africa, further impacting the Nile's water levels and ecosystem dynamics. The Indian Ocean's biodiversity is interconnected with the Nile River's ecological system. Many species that inhabit the Indian Ocean, such as migratory birds and marine mammals, migrate along the Nile River basin, utilizing its resources for feeding and breeding purposes. The health of the Indian Ocean's ecosystem thus indirectly affects the biodiversity and ecological balance of the Nile River. Indian Ocean plays a crucial role in shaping the dynamics of the Nile River. Its influence on water flow, nutrient distribution, climate patterns, and biodiversity highlights the complex interdependencies between these two important water bodies. Understanding the interconnectedness and impacts of the Indian Ocean on the Nile is essential for effective water resource management and conservation efforts in the region.

Keywords: water, management, environment, planning

Procedia PDF Downloads 102
828 The Tourism in the Regional Development of South Caucasus

Authors: Giorgi Sulashvili, Vladimer Kekenadze, Olga Khutsishvili, Bela Khotenashvili, Tsiuri Phkhakadze, Besarion Tsikhelashvili

Abstract:

The article dealt with the South Caucasus is a complex economic policy, which consists of strands: The process of deepening economic integration in the South Caucasus region; deepening economic integration with the EU in the framework of "Neighbourhood policy with Europe" and in line with the Maastricht criteria; the development of bilateral trade and economic relations with many countries of the world community; the development of sufficient conditions for the integration of the South Caucasus region in the world to enter the market. According to the author, to determine the place of Georgia in the regional policy of the South Caucasus, it is necessary to consider two views about Georgia: The first is the view of Georgia, as a part of global economic and political processes and the second look at Georgia, as a country located in the geo-economic and geopolitical space of the South Caucasus. Such approaches reveal the place of Georgia in two dimensions; in the global and regional economies. In the countries of South Caucasus, the tourism has been developing fast and has a great social and economic importance. Tourism influences deeply on the social and economic growth of the regions of the country. Tourism development formulates thousand new jobs, fixes the positions of small and middle businesses, ensures the development of the education and culture of the population. In the countries of South Caucasus, the Tourist Industry can be specified as the intersectoral complex, which consists of travel transport and it’s technical service network, tourist enterprises which are specialized in various types, wide network services. Tourists have a chance to enjoy all of these services. At the transitional stage of shifting to the market economy, tourism is among the priorities in the development of the national economy of our country. It is true that the Georgian tourism faces a range of problems at present, but its recognition and the necessity for its development may be considered as a fact. Besides, we would underline that the revitalization of the Georgian tourism is not only the question of time. This area can bring a lot of benefits as to private firms, as to specific countries. It also has many negative effects were conducted fundamental research and studies to consider both, positive and negative impacts of tourism. In the future such decisions will be taken that will bring, the maximum benefit at minimum cost, in order for tourism to take its place in Georgia it is necessary to understand the role of the tourism sector in the economic structure.

Keywords: transitional stage, national economy, Georgian tourism, positive and negative impacts

Procedia PDF Downloads 400