Search results for: Passive Solar Building Design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16496

Search results for: Passive Solar Building Design

10256 System Identification and Controller Design for a DC Electrical Motor

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.

Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols

Procedia PDF Downloads 39
10255 Through Hope and Struggle: The Meaning of the Gaisce Award for Youth in Irish Prisons

Authors: Silvia Gagliardi, Orlaith Rice

Abstract:

This article provides a qualitative evaluation of 'Gaisce - The President's Award' for youth in Irish prisons. Building on previous research on Gaisce, this article makes space for marginalized voices to provide their own feedback on the program they participate in while in custody. Both strengths and limitations in undertaking a positive youth development program in prison are identified and examined. More research with vulnerable and marginalized participants, such as youth in prison, is recommended as a way to further improve youth development programs and thus enhance the opportunities for self-development and psychological wellbeing for youth, including in custodial settings.

Keywords: Gaisce, president's award, youth development program, youth in custody, hope, psychological wellbeing, Ireland, qualitative research, covid-19

Procedia PDF Downloads 201
10254 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 663
10253 Investigating Citizens’ Perceptions and Attitudes toward China’s National Determined Contribution's Energy Restructuring Plan in Linfen City

Authors: Yuan Zhao, Phimsupha Kokchang

Abstract:

As a responsible nation, China has outlined its Nationally Determined Contributions (NDCs) of reaching peak carbon by 2030 and carbon neutrality by 2060. Peak and carbon neutrality are tough goals to achieve, and China must undertake a shift to green energy. In contrast, China's existing energy consumption structure is unsustainable and heavily dependent on coal supplies. China must revise its energy mix planning in order to strengthen energy security and satisfy the requirement for low-carbon energy generation to mitigate climate change. Shanxi Province is one of China's most important coal-producing regions, and Linfen is one of the province's key economic towns. However, Shanxi Province's economic development is severely hampered by the region's high levels of pollution and energy consumption. The purpose of this study is to investigate Linfen citizens' perceptions and attitudes toward China's NDC's energy restructuring plan through questionnaires. The majority of respondents were aware of China's NDCs, as indicated by 402 valid responses to an online questionnaire. Furthermore, respondents' perceptions and attitudes toward renewable energy initiatives are growing. To ensure that the results were dependable and consistent, reliability and validity were examined. According to the findings, the majority of Linfen's citizens believe that renewable energy projects such as solar and wind, which are consistent with China's NDCs, may improve their quality of life, public health, and the nation's economy.

Keywords: China’s NDC, perceptions, attitudes, Linfen, energy restructuring

Procedia PDF Downloads 66
10252 Neural Correlates of Decision-Making Under Ambiguity and Conflict

Authors: Helen Pushkarskaya, Michael Smithson, Jane E. Joseph, Christine Corbly, Ifat Levy

Abstract:

Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional Magnetic Resonance Imaging (fMRI) and a simple gamble design to study this question. In this design, the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on both expected value and variance. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across subjects. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. This novel double dissociation indicates that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.

Keywords: decision making, uncertainty, ambiguity, conflict, fMRI

Procedia PDF Downloads 550
10251 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 465
10250 History, Challenges and Solutions for Social Work Education and Recognition in Vietnam

Authors: Thuy Bui Anh, Ngan Nguyen Thi Thanh

Abstract:

Currently, social work in Vietnam is entering the first step in the development process to become a true profession with a strong position in society. However, Spirit of helping and sharing of social work has already existed in the daily life of Vietnamese people for a very long time, becoming a precious heritage passed down from ancestors to the next generations while expanding the territory, building and defending for the country. Following the stream of history, charity work in Vietnam has gradually transformed itself towards a more professional work, especially in the last 2 decades. Accordingly, more than 50 universities and educational institutions in Vietnam have been licensed to train social work, ensuring a stronger foundation on human resources working in this field. Despite the strong growth, social work profession, social work education and the recognition of the role of the social workers still need to be fueled to develop, responded to the increasing demand of Vietnam society.

Keywords: education, history, recognition, social work, Vietnam

Procedia PDF Downloads 310
10249 Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery

Authors: Ayoub Bouazza, Ali Faddouli, Said Amal, Rachid Benhida, Khaoula Khaless

Abstract:

Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite.

Keywords: salts crystallization, reverse osmosis, solar evaporation, frezchem, ZLD

Procedia PDF Downloads 91
10248 Investigation of Attitude of Production Workers towards Job Rotation in Automotive Industry against the Background of Demographic Change

Authors: Franciska Weise, Ralph Bruder

Abstract:

Due to the demographic change in Germany along with the declining birth rate and the increasing age of population, the share of older people in society is rising. This development is also reflected in the work force of German companies. Therefore companies should focus on improving ergonomics, especially in the area of age-related work design. Literature shows that studies on age-related work design have been carried out in the past, some of whose results have been put into practice. However, there is still a need for further research. One of the most important methods for taking into account the needs of an aging population is job rotation. This method aims at preventing or reducing health risks and inappropriate physical strain. It is conceived as a systematic change of workplaces within a group. Existing literature does not cover any methods for the investigation of the attitudes of employees towards job rotation. However, in order to evaluate job rotation, it is essential to have knowledge of the views of people towards rotation. In addition to an investigation of attitudes, the design of rotation plays a crucial role. The sequence of activities and the rotation frequency influence the worker and as well the work result. The evaluation of preliminary talks on the shop floor showed that team speakers and foremen share a common understanding of job rotation. In practice, different varieties of job rotation exist. One important aspect is the frequency of rotation. It is possible to rotate never, more than one time or even during every break, or more often than every break. It depends on the opportunity or possibility to rotate whenever workers want to rotate. From the preliminary talks some challenges can be derived. For example a rotation in the whole team is not possible, if a team member requires to be trained for a new task. In order to be able to determine the relation of the design and the attitude towards job rotation, a questionnaire is carried out in the vehicle manufacturing. The questionnaire will be employed to determine the different varieties of job rotation that exist in production, as well as the attitudes of workers towards those different frequencies of job rotation. In addition, younger and older employees will be compared with regard to their rotation frequency and their attitudes towards rotation. There are three kinds of age groups. Three questions are under examination. The first question is whether older employees rotate less frequently than younger employees. Also it is investigated to know whether the frequency of job rotation and the attitude towards the frequency of job rotation are interconnected. Moreover, the attitudes of the different age groups towards the frequency of rotation will be examined. Up to now 144 employees, all working in production, took part in the survey. 36.8 % were younger than thirty, 37.5 % were between thirty und forty-four and 25.7 % were above forty-five years old. The data shows no difference between the three age groups in relation to the frequency of job rotation (N=139, median=4, Chi²=.859, df=2, p=.651). Most employees rotate between six and seven workplaces per day. In addition there is a statistically significant correlation between the frequency of job rotation and the attitude towards the frequency (Spearman-Rho: 2-sided=.008, correlation coefficient=.223). Less than four workplaces per day are not enough for the employees. The third question, which differences can be found between older and younger people who rotate in a different way and with different attitudes towards job rotation, cannot be possible answered. Till now the data shows that younger people would like to rotate very often. Regarding to older people no correlation can be found with acceptable significance. The results of the survey will be used to improve the current practice of job rotation. In addition, the discussions during the survey are expected to help sensitize the employees with respect to rotation issues, and to contribute to optimizing rotation by means of qualification and an improved design of job rotation. Together with the employees and the results of the survey there must be found standards which show how to rotate in an ergonomic way while consider the attitude towards job rotation.

Keywords: job rotation, age-related work design, questionnaire, automotive industry

Procedia PDF Downloads 294
10247 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel

Authors: N. Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.

Procedia PDF Downloads 177
10246 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm

Authors: Muhammad Bilal, Zhongfeng Qiu

Abstract:

Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.

Keywords: AEORNET, AOD, SARA, GOCI, Beijing

Procedia PDF Downloads 159
10245 Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle

Authors: Kadri Koçer, Sezer Kefeli

Abstract:

This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle.

Keywords: maneuverability, stability, CFD, tail configuration, hydrodynamic design

Procedia PDF Downloads 166
10244 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 136
10243 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting

Procedia PDF Downloads 58
10242 Security Issues and Primary School Participation in Kenya

Authors: Rose Mwanza

Abstract:

This paper investigates security factors influencing primary school pupils’ school participation in Kenya. Schools, communities and the Government all have roles to play in enhancing primary school pupil’s school participation. The effective security system of a country provides the necessary avenues to facilitate improved health services protection of children and allows free movement of the country’s citizens which leads to a conducive atmosphere for school participation. Kenya is a signatory to international commitments and conventions related to security such as the National Policy on Peace Building and Conflict Management, United Nations Development Assistance Framework and Key Security Unity, which enable primary school pupils to participate in education. The paper also looks at the strategies the Government of Kenya has put in place to ensure effective pupil school participation.

Keywords: ethnicity, social media, participation in school, poverty, terrorism

Procedia PDF Downloads 54
10241 Optimisation of Dyes Decolourisation by Bacillus aryabhattai

Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.

Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design

Procedia PDF Downloads 214
10240 Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%.

Keywords: biodiesel production, factorial design, membrane reactor, soybean oil

Procedia PDF Downloads 367
10239 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 216
10238 Development of a Green Star Certification Tool for Existing Buildings in South Africa

Authors: Bouwer Kleynhans

Abstract:

The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings.

Keywords: certification tool, development process, energy consumption, green buildings

Procedia PDF Downloads 312
10237 The Conceptual Design Model of an Automated Supermarket

Authors: V. Sathya Narayanan, P. Sidharth, V. R. Sanal Kumar

Abstract:

The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a win-win situation.

Keywords: automated supermarket, electronic shopping, polygon-shaped rack, shortest path algorithm for shopping

Procedia PDF Downloads 396
10236 Criminal Liability for Criminal Tax

Authors: Theresia Simatupang dan Rahmayanti

Abstract:

Tax Law is a legal product and therefore should be subject to the legal norms, both about this actions, implementation, and about the material. Law has always aimed at providing justice, and besides that the law as a tool used to organize the order or rule of law. tax classification of a crime in this is very necessary, because the crime of taxation is very detrimental to the country and is still very high in society and socialization associated with punishment in sentencing that would have to provide a deterrent for the perpetrators, so refer to the this, these criminal offenses can endanger the stability of the nation's economy and the country that require special snacks. The application of legal sanctions against the perpetrators of the crime of taxation already has a strong legal basis, namely UU KUP. UU KUP have loaded threat (sanctions) severe punishment for tax payers who commit offenses and crimes in the field of taxation, which is contained in Article 38, and Article 39, Article 41, Article 41 A, and 41 B as well as Article 43 of Law and Law No. 12 KUP about 1985 Land Tax and Building. Criminal sanctions against violators of the tax provision are important because tax payers sanctions for violating tax laws.

Keywords: accountability, tax crime, criminal liability, taxation

Procedia PDF Downloads 339
10235 Problems and Prospects of Protection of Historical Building as a Corner Stone of Cultural Policy for International Collaboration in New Era: A Study of Fars Province, Iran

Authors: Kiyanoush Ghalavand, Ali Ferydooni

Abstract:

Fars province Fārs or Pārs is a vast land located in the southwest of Iran. All over the province, you can see and feel the glory of Ancient Iranian culture and civilization. There are many monuments from pre-historical to the Islamic era within this province. The existence of ancient cultural and historical monuments in Fars province including the historical complex of Persepolis, the tombs of Persian poets Hafez and Saadi, and dozens of other valuable cultural and historical works of this province as a symbol of Iranian national identity and the manifestation of transcendent cultural values of this national identity. Fars province is quintessentially Persian. Its name is the modern version of ancient Parsa, the homeland, if not the place of origin, of the Persians, one of the great powers of antiquity. From here, the Persian Empire ruled much of Western and Central Asia, receiving ambassadors and messengers at Persepolis. It was here that the Persian kings were buried, both in the mountain behind Persepolis and in the rock face of nearby Naqsh-e Rustam. We have a complex paradox in Persian and Islamic ideology in the age of technology in Iran. The main purpose of the present article is to identify and describe the problems and prospects of origin and development of the modern approach to the conservation and restoration of ancient monuments and historic buildings, the influence that this development has had on international collaboration in the protection and conservation of cultural heritage, and the present consequences worldwide. The definition of objects and structures of the past as heritage, and the policies related to their protection, restoration, and conservation, have evolved together with modernity, and are currently recognized as an essential part of the responsibilities of modern society. Since the eighteenth century, the goal of this protection has been defined as the cultural heritage of humanity; gradually this has included not only ancient monuments and past works of art but even entire territories for a variety of new values generated in recent decades. In its medium-term program of 1989, UNESCO defined the full scope of such heritage. The cultural heritage may be defined as the entire corpus of material signs either artistic or symbolic handed on by the past to each culture and, therefore, to the whole of humankind. As a constituent part of the affirmation and enrichment of cultural identities, as a legacy belonging to all humankind, the cultural heritage gives each particular place its recognizable features and is the storehouse of human experience. The preservation and the presentation of the cultural heritage are therefore a corner-stone of any cultural policy. The process, from which these concepts and policies have emerged, has been identified as the ‘modern conservation movement’.

Keywords: tradition, modern, heritage, historical building, protection, cultural policy, fars province

Procedia PDF Downloads 155
10234 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites

Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande

Abstract:

The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.

Keywords: delamination, FRP composite, Taguchi design, multi response optimization

Procedia PDF Downloads 262
10233 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks

Authors: Ali Etemadi, Claudia Fernanda Yasar

Abstract:

Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.

Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform

Procedia PDF Downloads 142
10232 Comparative Study of Titanium and Polyetheretherketone Cranial Implant Using Finite Element Model

Authors: Khaja Moiduddin, Sherif Mohammed Elseufy, Hisham Alkhalefah

Abstract:

Recent advances in three-dimensional (3D) printing, medical imaging, and implant design may alter how craniomaxillofacial surgeons construct individualized treatments using patient data. By utilizing medical image data, medical professionals can obtain detailed information about a patient's injuries, enabling them to conduct a thorough preoperative assessment while ensuring the implant's accuracy. However, selecting the right implant material requires careful consideration of various mechanical properties. This study aims to compare the two commonly used implant material for cranial reconstruction which includes titanium (Ti6Al4V) and Polyetheretherketone (PEEK). Biomechanical analysis was performed to study the implant behavior, by keeping the implant design and fixation constant in both cases. A finite element model was created and analyzed under loading conditions. The finite element analysis proves that although Ti6Al4V is stronger than PEEK but, its mechanical strength is adequate to bear the loads of the adjacent bone tissue.

Keywords: cranial reconstruction, titanium implants, PEEK, finite element model

Procedia PDF Downloads 61
10231 The Influence of the Visual and the Direct Physical Accessibility on the Sense of Control of Saudi Women in the Home Environment

Authors: Ahdab H. Mahdaly, Debajyoti Pati, Sharran Parkinson, Lee S. Duemer

Abstract:

The importance of providing employed mothers with the right physical environment inside the home is not an easy task, especially when the culture is involved. This study examines the typical Saudi home as a personal, emotional, social and cultural setting, especially on the interactions between the physical design and perceived control of working mothers. However, owing to the scarcity of published literature on Saudi homes, American employed mothers were included in the study to provide a baseline. With the ongoing transformations in women’s role in Saudi Arabia, there is a perception that traditional home designs may not afford the appropriate sense of control inside the home. Saudi Arabia has numerous interacting layers of socio-cultural-religious forces that affect residential design, and understanding the moderating role of the Saudi home is vital to the ongoing national policy transition on women. The study investigated one narrow, albeit critical, influence of home design on ones sense of control – direct visual and physical accessibility between sets of rooms. Ten subjects, five Saudis and five American, examined visual and physical access between 171 room sets, and provided qualitative responses on how each access influences their sense of control. Three main themes emerged, with potential effects on control: 1- Openness, 2- Proximity, and 3- Separation. Data suggest that although the Saudi home is a substantially more complex setting than the American ones, a class of spaces that can be termed as ‘Neutral Rooms’ serving as cultural separators may represent the ideal solution for optimizing sense of control, without ignoring cultural-religious traditions, during the transition of the Saudi women.

Keywords: direct physical accessibility, home environment, sense of control, visual accessibility, working mothers

Procedia PDF Downloads 305
10230 The Impacts of Land Use Change and Extreme Precipitation Events on Ecosystem Services

Authors: Szu-Hua Wang

Abstract:

Urban areas contain abundant potential biochemical storages and renewable and non-renewable flows. Urban natural environments for breeding natural assets and urban economic development for maintaining urban functions can be analyzed form the concept of ecological economic system. Land use change and ecosystem services change are resulting from the interactions between human activities and environments factually. Land use change due to human activities is the major cause of climate change, leading to serious impacts on urban ecosystem services, including provisioning services, regulating services, cultural services and supporting services. However, it lacks discussion on the interactions among urban land use change, ecosystem services change, and extreme precipitation events. Energy synthesis can use the same measure standard unit, solar energy, for different energy resources (e.g. sunlight, water, fossil fuels, minerals, etc.) and analyze contributions of various natural environmental resources on human economic systems. Therefore, this research adopts the concept of ecological, economic systems and energy synthesis for analyzing dynamic spatial impacts of land use change on ecosystem services, using the Taipei area as a case study. The analysis results show that changes in land use in the Taipei area, especially the conversion of natural lands and agricultural lands to urban lands, affect the ecosystem services negatively. These negative effects become more significant during the extreme precipitation events.

Keywords: urban ecological economic system, extreme precipitation events, ecosystem services, energy

Procedia PDF Downloads 182
10229 Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: constructal theory, enthalpy porosity approach, phase change materials, fins

Procedia PDF Downloads 171
10228 Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives

Authors: Grmanesh Gidey Kahsay

Abstract:

In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries.

Keywords: essential quality tools, quality systems and models, quality management systems, and quality assurance

Procedia PDF Downloads 144
10227 Comparison of the Effects of Rod Types of Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis

Authors: Bokku Kang, Changsoo Chon, Han Sung Kim

Abstract:

We developed new design of rod of pedicle screw system that is beneficial in maintaining the spacing between the vertebrae and assessed the performance of the posterior fixation screw systems by numerical analysis according to the range of motion (flexion, extension, lateral bending, and axial rotation) of the vertebral column after inserting the pedicle screws. The simulation results showed that the conventional rod was the most low equivalent stress value among implant units in the case of flexion, extension and lateral bending of the vertebrae. In all cases except the torsional rotation, the results showed that the stress level of the single and double rounded rod exceeded about 30% to 70% compare to the conventional rod. Therefore, this product is not suitable for actual application in the field yet and it seems that product design optimization is necessary. Acknowledgement: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.

Keywords: lumber spine, internal fixation device, finite element method, biomechanics

Procedia PDF Downloads 370