Search results for: urban heat island
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6853

Search results for: urban heat island

703 Role of Symbolism in the Journey towards Spirituality: A Case Study of Mosque Architecture in Bahrain

Authors: Ayesha Agha Shah

Abstract:

The purpose of a mosque or a place of worship is to build a spiritual relation with God. If the sense of spirituality is not achieved, then sacred architecture appears to be lacking depth. Form and space play a significant role to enhance the architectural quality to impart a divine feel to a place. To achieve this divine feeling, form and space, and unity of opposites, either abstract or symbolic can be employed. It is challenging to imbue the emptiness of a space with qualitative experience. Mosque architecture mostly entails traditional forms and design typology. This approach for Muslim worship produces distinct landmarks in the urban neighborhoods of Muslim societies, while creating a great sense of spirituality. The universal symbolic characters in the mosque architecture had prototype geometrical forms for a long time in history. However, modern mosques have deviated from this approach to employ different built elements and symbolism, which are often hard to be identified as related to mosques or even as Islamic. This research aims to explore the sense of spirituality in modern mosques and questions whether the modification of geometrical features produce spirituality in the same manner. The research also seeks to investigate the role of ‘geometry’ in the modern mosque architecture. The research employs the analytical study of some modern mosque examples in the Kingdom of Bahrain, reflecting on the geometry and symbolism adopted in the new mosque architecture design. It buttresses the analysis by the engagement of people’s perceptions derived using a survey of opinions. The research expects to see the significance of geometrical architectural elements in the mosque designs. It will find answers to the questions such as; what is the role of the form of the mosque, interior spaces and the effect of the modified symbolic features in the modern mosque design? How can the symbolic geometry, forms and spaces of a mosque invite a believer to leave the worldly environment behind and move towards spirituality?

Keywords: geometry, mosque architecture, spirituality, symbolism

Procedia PDF Downloads 99
702 Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard

Authors: Oskar Sekowski

Abstract:

Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties.

Keywords: climatologic potential, climatic classification, Poland, viticulture

Procedia PDF Downloads 86
701 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior

Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns

Abstract:

A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.

Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation

Procedia PDF Downloads 175
700 "Gurza Incinerator" : Biomass Incinerator Powered by Empty Bunch of Palm Oil Fruits as Electrical Biomass Base Development

Authors: Andi Ismanto

Abstract:

Indonesia is the largest palm oil producer in the world. The increasing number of palm oil extensification in Indonesia started on 2000-2011. Based on preliminary figures from the Directorate General of Plantation, palm oil area in Indonesia until 2011 is about 8.91 million hectares.On 2011 production of palm oil CPO reaches 22.51 million tons. In the other hands, the increasing palm oil production has impact to environment. The Empty Bunch of Palm Oil (EBPO)waste was increased to 20 million tons in 2009. Utilization of waste EBPO currently only used as an organic fertilizer for plants. But, it was not a good solution, because TKKS that used as organic compost has high content of carbon and hydrogen compound. The EBPO waste has potential used as fuel by gasification because it has short time of decomposition. So, the process will be more efficient in time. Utilization of urban wastehas been created using an incinerator used as a source of electrical energy for household.Usually, waste burning process by incinerator is using diesel fuel and kerosene. It is certainly less effective and not environment friendly, considering the waste incineration process using Incinerator tools are continuously. Considering biomass is a renewable source of energy and the world's energy system must be switch from an energy based on fossil resources into the energy based on renewable resources, the "Gurza Incinerator": Design Build Powerful Biomass Incinerator Empty Bunch of Palm Oil (EBPO) as Elecrical Biomass Base Development, a renewable future technology. The tools is using EBPO waste as source of burning to burn garbage inside the Incinerator hopper. EBPO waste will be processed by means of gasification. Gasification isa process to produce gases that can be used as fuel for electrical power. Hopefully, this technology could be a renewable future energy and also as starting point of electrical biomass base development.

Keywords: incinerator, biomass, empty bunch palm oil, electrical energy

Procedia PDF Downloads 458
699 Tibial Plateau Fractures During Covid-19 In A Trauma Unit. Impact of Lockdown and The Pressures on the Healthcare Provider

Authors: R. Gwynn, P. Panwalkar, K. Veravalli , M. Tofighi, R. Clement, A. Mofidi

Abstract:

The aim of this study was to access the impact of Covid-19 and lockdown on the incidence, injury pattern, and treatment of tibial plateau fractures in a combined rural and urban population in wales. Methods: Retrospective study was performed to identify tibial plateau fractures in 15-month period of Covid-19 lockdown 15-month period immediately before lockdown. Patient demographics, injury mechanism, injury severity (based on Schatzker classification), and associated injuries, treatment methods, and outcome of fractures in the Covid-19 period was studied. Results: The incidence oftibial plateau fracture was 9 per 100000 during Covid-19, and 8.5 per 100000, and both were similar to previous studies. The average age was 52, and female to male ratio was 1:1 in both control and study group. High energy injury was seen in only 20% of the patients and 35% in the control groups (2=12, p<0025). 14% of the covid-19 population sustained other injuries as opposed 16% in the control group(2=0.09, p>0.95). Lower severity isolated lateral condyle fracturesinjury (Schatzker 1-3) were seen in 40% of fractures this was 60% in the control populations. Higher bicondylar and shaft fractures (Schatzker 5-6) were seen in 60% of the Covid-19 group and 35% in the control groups(2=7.8, p<0.02). Treatment mode was not impacted by Covid-19. The complication rate was low in spite of higher number of complex fractures and the impact of covid-19 pandemic. Conclusion: The associated injuries were similar in spite of a significantly lower mechanism of injury. There were unexpectedly worst tibial plateau fracture based Schatzker classification in the Covid-19 period as compared to the control groups. This was especially relevant for medial condyle and shaft fractures. This was postulated to be caused by reduction in bone density caused by lack of vitamin D and reduction in activity. The treatment mode and outcome was not impacted by the impact of Covid-19 on care for tibial plateau fractures.

Keywords: Covid-19, knee, tibial plateau fracture, trauma

Procedia PDF Downloads 106
698 Water Harvest and Recycling with Principles of Permaculture in Rural Buildings in Southeastern Anatolia Region, Turkey

Authors: Muhammed Gündoğan

Abstract:

Permaculture is an important source of science and experience that can ensure the integration of sustainable architecture with nature. Since the past, many applications have been applied in rural areas for generations with the principle of benefiting from the self-renewal potential of nature. This culture, which has been transferred from generation to generation with architectural disciplines, has the potential to significantly improve the sustainability of the rural area and is an important guide with its nature-based solution proposals. Şanlıurfa has arid and semi-arid climate characteristics. Although it has substantial agricultural potential, water is limited, especially in rural areas. In the region, rainwater harvesting practices such as artificial water canals and cisterns have been used for a long time. However, these solutions remained mostly at the urban scale, and their reflections at the building scale were restricted and inadequate solutions. Impermeable surfaces are required for water harvesting, but water harvesting is not possible as rural buildings are mostly surrounded by cultivated land. Therefore, existing structures are important in terms of applicability. In this context, considering the typology of Traditional Şanlıurfa Houses, the aim of the project was to create a proposal for limited potable and utility water, which is a serious problem, especially for rural buildings in Şanlıurfa. In the project proposal, roof systems that can work integrated with the structural shape of Traditional Şanlıurfa Houses, rainwater collection systems in the inner courtyard, and greywater recycling were provided. While the average precipitation amount was 453.7 kg/m3 between 1929 and 2012, this value was measured as 622.7 kg/m3 in 2012. Greywater was used to produce natural fertilizers and compost for small-scale fruit and vegetable gardens, and it was combined with the principles of Permaculture to make it a lifestyle. As a result, it has been estimated that a total of 976.4 m3 kg of water can be saved, with an annual average of 158.8 m3 of rainwater recycling and 817.6 m3 of greywater recycling within the scope of the project.

Keywords: rural, traditional residential building, permaculture, rainwater harvesting, greywater recycling

Procedia PDF Downloads 113
697 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 312
696 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 170
695 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties

Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.

Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers

Procedia PDF Downloads 122
694 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application

Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli

Abstract:

Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.

Keywords: atomization, desalination, flash evaporation, rotary bell atomizer

Procedia PDF Downloads 63
693 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 248
692 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 206
691 An Appraisal of the Knowledge Attitude and Practice (Kap) on Plastic Waste Pollution as a Resilience Pathway for Mitigating Climate Change Case of Durumi 1 Urban Slum Area of Abuja Nigeria

Authors: Pascal U. Onu, Doris A. Ogbang, Emmanuel Okechukwu.

Abstract:

Background: Plastics in their various forms have become ubiquitous in a very short space of time. This ubiquitous nature has plagued and daunted nations globally, overwhelming their ability to manage the environmental impact, especially its linkages to climate change. This has mobilized nations globally and triggered debates on the best approaches to ensure sustainability in terms of its production and utilization, as total elimination seems unrealistic. Objective: This study undertook to understand the pattern of plastic waste management, and its pollution awareness levels by the residents of the study area. Methods: Data were obtained through questionnaires designed specifically for plastic waste and qualitatively via journals and articles. Simple descriptive survey techniques with a survey population size of 300 respondents using kobo collect were employed. Results: Analysis based on disaggregated data indicated a proportionate distribution among male and female respondents (53% male and 47% female, respectively). Overall awareness levels on plastic waste's contribution to climate change, compared to its environmental impact, are reflective of a dire need for increased efforts in strengthening awareness creation, especially across gender populations and religious backgrounds. Drainage blockage topped the ranks among common problems caused by plastic waste within the area. Various plastic waste disposal methods were ranked, while pro-environmental measures for reducing the waste menace showed more willingness from males at 52%. Conclusion: These outcomes are instructive and suggest the need for renewed and increased awareness/education on the nexus of plastic pollution to climate change and also appropriate synergies/collaboration between government, private sector, and local communities, especially in the area of recycling to improve sustainability in plastic waste management.

Keywords: plastic waste, KAP, climate change, Nigeria

Procedia PDF Downloads 20
690 Correlates of Modes of Transportation to Work among Working Adults in Ernakulam District, Kerala

Authors: Anjaly Joseph, Elezebeth Mathews

Abstract:

Transportation and urban planning is the least recognised area for physical activity promotion in India, unlike developed regions. Identifying the preferred transportation modalities and factors associated with it is essential to address these lacunae. The objective of the study was to assess the prevalence of modes of transportation to work, and its correlates among working adults in Ernakulam District, Kerala. A cross sectional study was conducted among 350 working individuals in the age group of 18-60 years, selected through multi-staged stratified random sampling in Ernakulam district of Kerala. The inclusion criteria were working individuals 18-60 years, workplace at a distance of more than 1 km from the home and who worked five or more days a week. Pregnant women/women on maternity leave and drivers (taxi drivers, autorickshaw drivers, and lorry drivers) were excluded. An interview schedule was used to capture the modes of transportation namely, public, private and active transportation, socio demographic details, travel behaviour, anthropometric measurements and health status. Nearly two-thirds (64 percent) of them used private transportation to work, while active commuters were only 6.6 percent. The correlates identified for active commuting compared to other modes were low socio-economic status (OR=0.22, CI=0.5-0.85) and presence of a driving license (OR=4.95, CI= 1.59-15.45). The correlates identified for public transportation compared to private transportation were female gender (OR= 17.79, CI= 6.26-50.31), low income (OR=0.33, CI= 0.11-0.93), being unmarried (OR=5.19, CI=1.46-8.37), presence of no or only one private vehicle in the house (OR=4.23, CI=1.24-20.54) and presence of convenient public transportation facility to workplace (OR=3.97, CI= 1.66-9.47). The association between body mass index (BMI) and public transportation were explored and found that public transport users had lesser BMI than private commuters (OR=2.30, CI=1.23-4.29). Policies that encourage active and public transportation needs to be introduced such as discouraging private vehicle through taxes, introduction of convenient and safe public transportation facility, walking/cycling paths, and paid parking facility.

Keywords: active transportation, correlates, India, public transportation, transportation modes

Procedia PDF Downloads 150
689 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 177
688 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering

Authors: N. Casado-Sanz, B. Guirao

Abstract:

The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.

Keywords: cluster analysis, population ageing, rural roads, road safety

Procedia PDF Downloads 94
687 Agricultural Organized Areas Approach for Resilience to Droughts, Nutrient Cycle and Rural and Wild Fires

Authors: Diogo Pereira, Maria Moura, Joana Campos, João Nunes

Abstract:

As the Ukraine war highlights the European Economic Area’s vulnerability and external dependence on feed and food, agriculture gains significant importance. Transformative change is necessary to reach a sustainable and resilient agricultural sector. Agriculture is an important drive for bioeconomy and the equilibrium and survival of society and rural fires resilience. The pressure of (1) water stress, (2) nutrient cycle, and (3) social demographic evolution towards 70% of the population in Urban systems and the aging of the rural population, combined with climate change, exacerbates the problem and paradigm of rural and wildfires, especially in Portugal. The Portuguese territory is characterized by (1) 28% of marginal land, (2) the soil quality of 70% of the territory not being appropriate for agricultural activity, (3) a micro smallholding, with less than 1 ha per proprietor, with mainly familiar and traditional agriculture in the North and Centre regions, and (4) having the most vulnerable areas for rural fires in these same regions. The most important difference between the South, North and Centre of Portugal, referring to rural and wildfires, is the agricultural activity, which has a higher level in the South. In Portugal, rural and wildfires represent an average annual economic loss of around 800 to 1000 million euros. The WinBio model is an agrienvironmental metabolism design, with the capacity to create a new agri-food metabolism through Agricultural Organized Areas, a privatepublic partnership. This partnership seeks to grow agricultural activity in regions with (1) abandoned territory, (2) micro smallholding, (3) water and nutrient management necessities, and (4) low agri-food literacy. It also aims to support planning and monitoring of resource use efficiency and sustainability of territories, using agriculture as a barrier for rural and wildfires in order to protect rural population.

Keywords: agricultural organized areas, residues, climate change, drought, nutrients, rural and wild fires

Procedia PDF Downloads 56
686 Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review

Authors: Mst. Nilufa Sultana, Shatirah Akib, Muhammad Aqeel Ashraf, Mohamed Roseli Zainal Abidin

Abstract:

Most people today are aware that global Climate change, is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kualalumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.

Keywords: Green roofs, INWQS, MSMA-SME, rainwater harvesting, water treatment, water quality parameter, WQI

Procedia PDF Downloads 520
685 Conviviality as a Principle in Natural and Social Realms

Authors: Xiao Wen Xu

Abstract:

There exists a challenge of accommodating/integrating people at risk and those from various backgrounds in urban areas. The success of interdependence as a tool for survival largely rests on the mutually beneficial relationships amongst individuals within a given society. One approach to meeting this challenge has been written by Ivan Illich in his book, Tools for Conviviality, where he defines 'conviviality' as interactions that help individuals. With the goal of helping the community and applying conviviality as a principle to actors in both natural and social realms of Moss Park in Toronto, the proposal involves redesigning the park and buildings as a series of different health care, extended learning, employment support, armoury, and recreation facilities that integrate the exterior landscape as treatment, teaching, military, and recreation areas; in other words, the proposal links services with access to park space. While buildings are traditionally known to physically provide shelter, parks embody shelter and act as service, as people often find comfort and relief from being in nature, and Moss Park, in particular, is home to many people at risk. This landscape is not only an important space for the homeless community but also the rest of the neighborhood. The thesis proposes that the federal government rebuilds the current armoury, as it is an obsolete building while acknowledging the extensive future developments proposed by developers and its impact on public space. The neighbourhood is an underserved area, and the new design develops not just a new armoury, but also a complex of interrelated services, which are completely integrated into the park. The armoury is redesigned as an integral component of the community that not only serves as training facilities for reservists but also serves as an emergency shelter in sub-zero temperatures for the homeless community. This paper proposes a new design for Moss Park through examining how 'park buildings', interconnected buildings and parks, can foster empowering relationships that create a supportive public realm.

Keywords: conviviality, natural, social, Ivan Illich

Procedia PDF Downloads 382
684 Referring to Jordanian Female Relatives in Public

Authors: Ibrahim Darwish, Noora Abu Ain

Abstract:

Referring to female relatives by male Jordanian speakers in public is governed by various linguistic and social constraints. Although Jordanian society is less conservative than it was a few decades ago, women are still considered the weaker link in society and men still believe that they need to protect them. Conservative Jordanians often avoid referring to their female relatives overtly, i.e., using their real names. Instead, they use covert names, such as pseudonyms, nicknames, pet names, etc. The reason behind such language use has to do with how Arab men, in general, see women as part of their honor. This study intends to investigate to what extent Jordanian males hide their female relatives’ names in public domains. The data was collected from spontaneous informal voice-recorded interviews carried out in the village of Saham in the far north of Jordan. Saham’s dialect is part of a larger Horani dialect used by speakers along a wide area that stretches from Salt in the south to the Syrian borders in the north of Jordan. The voice-recorded interviews were originally carried out as an audio record of some customs and traditions in the village of Saham in 2013. During most of these interviews, the researchers observed how the male participants indirectly referred to their female relatives. Instead of using real names, the male speakers used broad terms to refer to their female relatives, such al-Beit ‘the home,’ al-ciyaal ‘the kids’, um-x ‘the mother of x,’ etc. All tokens related to the issue in question were collected, analyzed and quantified about three age cohorts: young, middle-aged and old speakers. The results show that young speakers are more direct in referring to their female relatives than the other two age groups. This can point to a possible change in progress in the speech community of Saham. It is argued that due to contact with other urban speech communities, the young speakers in Saham do not feel the need to hide the real names of their female relatives as they consider them as equals. Indeed, the young generation is more open to the idea of women's rights and call for expanding Jordanian women’s roles in Jordanian society.

Keywords: gender differences, Horan, proper names, social constraints

Procedia PDF Downloads 118
683 Analysis of Splicing Methods for High Speed Automated Fibre Placement Applications

Authors: Phillip Kearney, Constantina Lekakou, Stephen Belcher, Alessandro Sordon

Abstract:

The focus in the automotive industry is to reduce human operator and machine interaction, so manufacturing becomes more automated and safer. The aim is to lower part cost and construction time as well as defects in the parts, sometimes occurring due to the physical limitations of human operators. A move to automate the layup of reinforcement material in composites manufacturing has resulted in the use of tapes that are placed in position by a robotic deposition head, also described as Automated Fibre Placement (AFP). The process of AFP is limited with respect to the finite amount of material that can be loaded into the machine at any one time. Joining two batches of tape material together involves a splice to secure the ends of the finishing tape to the starting edge of the new tape. The splicing method of choice for the majority of prepreg applications is a hand stich method, and as the name suggests requires human input to achieve. This investigation explores three methods for automated splicing, namely, adhesive, binding and stitching. The adhesive technique uses an additional adhesive placed on the tape ends to be joined. Binding uses the binding agent that is already impregnated onto the tape through the application of heat. The stitching method is used as a baseline to compare the new splicing methods to the traditional technique currently in use. As the methods will be used within a High Speed Automated Fibre Placement (HSAFP) process, this meant the parameters of the splices have to meet certain specifications: (a) the splice must be able to endure a load of 50 N in tension applied at a rate of 1 mm/s; (b) the splice must be created in less than 6 seconds, dictated by the capacity of the tape accumulator within the system. The samples for experimentation were manufactured with controlled overlaps, alignment and splicing parameters, these were then tested in tension using a tensile testing machine. Initial analysis explored the use of the impregnated binding agent present on the tape, as in the binding splicing technique. It analysed the effect of temperature and overlap on the strength of the splice. It was found that the optimum splicing temperature was at the higher end of the activation range of the binding agent, 100 °C. The optimum overlap was found to be 25 mm; it was found that there was no improvement in bond strength from 25 mm to 30 mm overlap. The final analysis compared the different splicing methods to the baseline of a stitched bond. It was found that the addition of an adhesive was the best splicing method, achieving a maximum load of over 500 N compared to the 26 N load achieved by a stitching splice and 94 N by the binding method.

Keywords: analysis, automated fibre placement, high speed, splicing

Procedia PDF Downloads 137
682 Gentrification in Istanbul: The Twin Paradox

Authors: Tugce Caliskan

Abstract:

The gentrification literature in Turkey provided important insights regarding the analysis of the socio-spatial change in İstanbul mostly through the existing gentrification theories which were produced in Anglo-American literature. Yet early researches focused on the classical gentrification while failing to notice other place-specific forms of the phenomena. It was only after the mid-2000s that scholarly attention shifted to the recent discussions in the mainstream such as the neoliberal urban policies, government involvement, and resistance. Although these studies have considerable potential to contribute to the geography of gentrification, it seems that copying the linear timeline of Anglo-American conceptualization limited the space to introduce contextually nuanced way of process in Turkey. More specifically, the gentrification literature in Turkey acknowledged the linear timeline of the process drawing on the mainstream studies, and, made the spontaneous classical gentrification as the starting point in İstanbul at the expense of contextually specific forms of the phenomenon that took place in the same years. This paper is an attempt to understand place-specific forms of gentrification through the abandonment of the linear understanding of time. In this vein, this paper approaches the process as moving both linear and cyclical rather than the waves succeeded each other. Maintaining a dialectical relationship between the cyclical and the linear time, this paper investigates how the components of gentrification have been taken place in the cyclical timeline while becoming bolder in the linear timeline. This paper argues that taking the (re)investment in the secondary circuit of capital and class transformation as the core characteristics of gentrification, and accordingly, searching for these components beyond the linear timeline provide strategic value to decenter the perspectives, not merely for Turkish studies. In this vein, this strategy revealed that Western experience of gentrification did not travel, adopted or copied in Turkey but gentrification -as an abstract and general concept- has emerged as a product of different contextual, historical and temporal forces which must be considered within the framework of state-led urbanization as early as 1980 differing from the Global North trajectories.

Keywords: comparative urbanism, geography of gentrification, linear and cyclical timeline, state-led gentrification

Procedia PDF Downloads 94
681 Social Enterprise Concept in Sustaining Agro-Industry Development in Indonesia: Case Study of Yourgood Social Business

Authors: Koko Iwan Agus Kurniawan, Dwi Purnomo, Anas Bunyamin, Arif Rahman Jaya

Abstract:

Fruters model is a concept of technopreneurship-based on empowerment, in which technology research results were designed to create high value-added products and implemented as a locomotive of collaborative empowerment; thereby, the impact was widely spread. This model still needs to be inventoried and validated concerning the influenced variables in the business growth process. Model validation accompanied by mapping was required to be applicable to Small Medium Enterprises (SMEs) agro-industry based on sustainable social business and existing real cases. This research explained the empowerment model of Yourgood, an SME, which emphasized on empowering the farmers/ breeders in farmers in rural areas, Cipageran, Cimahi, to housewives in urban areas, Bandung, West Java, Indonesia. This research reviewed some works of literature discussing the agro-industrial development associated with the empowerment and social business process and gained a unique business model picture with the social business platform as well. Through the mapped business model, there were several advantages such as technology acquisition, independence, capital generation, good investment growth, strengthening of collaboration, and improvement of social impacts that can be replicated on other businesses. This research used analytical-descriptive research method consisting of qualitative analysis with design thinking approach and that of quantitative with the AHP (Analytical Hierarchy Process). Based on the results, the development of the enterprise’s process was highly affected by supplying farmers with the score of 0.248 out of 1, being the most valuable for the existence of the enterprise. It was followed by university (0.178), supplying farmers (0.153), business actors (0.128), government (0.100), distributor (0.092), techno-preneurship laboratory (0.069), banking (0.033), and Non-Government Organization (NGO) (0.031).

Keywords: agro-industry, small medium enterprises, empowerment, design thinking, AHP, business model canvas, social business

Procedia PDF Downloads 152
680 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 158
679 Simple Assessments to Demystify Complementary Feeding: Leveraging a Successful Literacy Initiative Assessment Approach in Gujarat, India

Authors: Smriti Pahwa, Karishma Vats, Aditi Macwan, Jija Dutt, Sumukhi Vaid

Abstract:

Age approporiate complementary feeding has been stressed upon for sound young child nutrition and appropriate growth. National Infant and Young Child Feeding guidelines, policies and programs indicate cognizance of the issue taken by the country’s government, policy makers and technical experts. However, it is important that ordinary people, the caregivers of young children too understand the importance of appropriate feeding. For this, an interface might be required where ordinary people could participate in assessing the gaps in IYCF as a first step to take subsequent action. In this context an attempt was made to extrapolate a citizen led learning level survey that has been involving around 25000 ordinary citizens to reach out to 600,000 children annually for over a decade in India. Based on this philosophy of involving ordinary people in simple assessments to produce understandable actionable evidence, a rapid diet assessment tool was developed and collected from caregivers of 90 < 3year children from two urban clusters in Ahmedabad and Baroda, Gujarat. Target sample for pilot was selected after cluster census. Around half the mothers reported that they had not yet introduced water or other fluids to their < 6 month babies. However, about a third were already feeding them food other than mother’s milk. Although complementary feeding was initiated in almost all (95%) children more than 6 months old, frequency was suboptimal in 60%; in 80% cases no measure was taken to either improve energy or nutrient density; only 33% were fed protective foods; Green Leafy Vegetables consumption was negligible (1.4%). Anganwadi food was not consumed. By engaging ordinary people to generate evidence and understand the gaps, such assessments have the potential to be used to generate useful evidence for action at scale as well as locally.

Keywords: citizen led, grass root engagement, IYCF (Infant and Young Child Feeding), rapid diet assessment, under nutrition

Procedia PDF Downloads 155
678 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 283
677 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort

Procedia PDF Downloads 243
676 Local Governments Supporting Environmentally Sustainable Meals to Protect the Planet and People

Authors: Magdy Danial Riad

Abstract:

Introduction: The ability of our world to support the expanding population after 2050 is at risk due to the food system's global role in poor health, climate change, and resource depletion. Healthy, equitable, and sustainable food systems must be achieved from the point of production through consumption in order to meet several of the sustainable development goals (SDG) targets. There is evidence that changing the local food environment can effectively change dietary habits in a community. The purpose of this article is to outline the policy initiatives taken by local governments to support environmentally friendly eating habits. Methods: Five databases were searched for peer-reviewed articles that described local government authorities' implementation of environmentally sustainable eating habits, were located in cities that had signed the Milan Urban Food Policy Pact, were published after 2015, were available in English, and described policy interventions. Data extraction was a two-step approach that started with extracting information from the included study and ended with locating information unique to policies in the grey literature. Results: 45 papers that described a variety of policy initiatives from low-, middle-, and high-income countries met the inclusion criteria. A variety of desired dietary behaviors were the focus of policy action, including reducing food waste, procuring food locally and in season, boosting breastfeeding, avoiding overconsumption, and consuming more plant-based meals and fewer items derived from animals. Conclusions: In order to achieve SDG targets, local governments are under pressure to implement evidence-based interventions. This study can help direct local governments toward evidence-based policy measures to improve regional food systems and support ecologically friendly eating habits.

Keywords: meals, planet, poor health, eating habits

Procedia PDF Downloads 43
675 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 384
674 Agrarian Transitions and Rural Social Relations in Jharkhand, India

Authors: Avinash

Abstract:

Rural Jharkhand has attracted lesser attention in the field of agrarian studies in India, despite more than eighty percent of its rural population being directly dependent on agriculture as their primary source of livelihood. The limited studies on agrarian issues in Jharkhand have focused predominantly on the subsistence nature of agriculture and low crop productivity. There has also not been much research on agrarian social relations between ‘tribe’ and ‘non-tribe’ communities in the region. This paper is an attempt to understand changing agrarian social relations between tribal and non-tribal communities relating them to different kinds of agrarian transitions taking place in two districts of Jharkhand - Palamu and Khunti. In the Palamu region, agrarian relations are dominated by the presence and significant population size of Hindu high caste land owners, whereas in the Khunti region, agrarian relations are characterized by the population size and dominance of tribes and lower caste land owner cum cultivators. The agrarian relations between ‘upper castes’ and ‘tribes’ in these regions are primarily related to agricultural daily wage labour. However, the agrarian social relations between Dalits and tribal people take the form of ‘communal system of labour exchange’ and ‘household-based labour’. In addition, the ethnographic study of the region depicts steady agrarian transitions (especially shift from indigenous to ‘High Yielding Variety’ (HYV) paddy seeds and growing vegetable cultivation) where ‘Non-Governmental Organizations’ (NGOs) and agricultural input manufacturers and suppliers are playing a critical role in agrarian transitions as intermediaries. While agricultural productivity still remains low, both the regions are witnessing slow but gradual agrarian transitions. Rural-urban linkages in the form of seasonal labour migration are creating capital and technical inflows that are transforming agricultural activities. This study describes and interprets the above changes through the lens of ‘regional rurality’.

Keywords: agrarian transitions, rural Jharkhand, regional rurality, tribe and non-tribe

Procedia PDF Downloads 162