Search results for: model qualification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17047

Search results for: model qualification

10897 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 279
10896 E-Governance: A Key for Improved Public Service Delivery

Authors: Ayesha Akbar

Abstract:

Public service delivery has witnessed a significant improvement with the integration of information communication technology (ICT). It not only improves management structure with advanced technology for surveillance of service delivery but also provides evidence for informed decisions and policy. Pakistan’s public sector organizations have not been able to produce some good results to ensure service delivery. Notwithstanding, some of the public sector organizations in Pakistan has diffused modern technology and proved their credence by providing better service delivery standards. These good indicators provide sound basis to integrate technology in public sector organizations and shift of policy towards evidence based policy making. Rescue-1122 is a public sector organization which provides emergency services and proved to be a successful model for the provision of service delivery to save human lives and to ensure human development in Pakistan. The information about the organization has been received by employing qualitative research methodology. The information is broadly based on primary and secondary sources which includes Rescue-1122 website, official reports of organizations; UNDP (United Nation Development Program), WHO (World Health Organization) and by conducting 10 in-depth interviews with the high administrative staff of organizations who work in the Lahore offices. The information received has been incorporated with the study for the better understanding of the organization and their management procedures. Rescue-1122 represents a successful model in delivering the services in an efficient way to deal with the disaster management. The management of Rescue has strategized the policies and procedures in such a way to develop a comprehensive model with the integration of technology. This model provides efficient service delivery as well as maintains the standards of the organization. The service delivery model of rescue-1122 works on two fronts; front-office interface and the back-office interface. Back-office defines the procedures of operations and assures the compliance of the staff whereas, front-office equipped with the latest technology and good infrastructure handles the emergency calls. Both ends are integrated with satellite based vehicle tracking, wireless system, fleet monitoring system and IP camera which monitors every move of the staff to provide better services and to pinpoint the distortions in the services. The standard time of reaching to the emergency spot is 7 minutes, and during entertaining the case; driver‘s behavior, traffic volume and the technical assistance being provided to the emergency case is being monitored by front-office. Then the whole information get uploaded to the main dashboard of Lahore headquarter from the provincial offices. The latest technology is being materialized by Rescue-1122 for delivering the efficient services, investigating the flaws; if found, and to develop data to make informed decision making. The other public sector organizations of Pakistan can also develop such models to integrate technology for improving service delivery and to develop evidence for informed decisions and policy making.

Keywords: data, e-governance, evidence, policy

Procedia PDF Downloads 251
10895 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 358
10894 Finite Element Modeling of Ultrasonic Shot Peening Process using Multiple Pin Impacts

Authors: Chao-xun Liu, Shi-hong Lu

Abstract:

In spite of its importance to the aerospace and automobile industries, little or no attention has been devoted to the accurate modeling of the ultrasonic shot peening (USP) process. It is therefore the purpose of this study to conduct finite element analysis of the process using a realistic multiple pin impacts model with the explicit solver of ABAQUS. In this paper, we research the effect of several key parameters on the residual stress distribution within the target, including impact velocity, incident angle, friction coefficient between pins and target and impact number of times were investigated. The results reveal that the impact velocity and impact number of times have obvious effect and impacting vertically could produce the most perfect residual stress distribution. Then we compare the results with the date in USP experiment and verify the exactness of the model. The analysis of the multiple pin impacts date reveal the relationships between peening process parameters and peening quality, which are useful for identifying the parameters which need to be controlled and regulated in order to produce a more beneficial compressive residual stress distribution within the target.

Keywords: ultrasonic shot peening, finite element, multiple pins, residual stress, numerical simulation

Procedia PDF Downloads 454
10893 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications

Authors: H. Hruschka

Abstract:

This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.

Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models

Procedia PDF Downloads 206
10892 Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques

Authors: Freddy Patricio Moncayo-Matute, Pablo Gerardo Peña-Tapia, Vázquez-Silva Efrén, Paúl Bolívar Torres-Jara, Diana Patricia Moya-Loaiza, Gabriela Abad-Farfán

Abstract:

This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure.

Keywords: surgical planning, additive manufacturing, rapid prototyping, fused deposition modeling, custom anatomical model

Procedia PDF Downloads 105
10891 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 48
10890 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 483
10889 An Integrated Assessment (IA) of Water Resources in the Speightstown Catchment, Barbados Using a GIS-Based Decision Support System

Authors: Anuradha Maharaj, Adrian Cashman

Abstract:

The cross-cutting nature of water as a resource translates into the need for a better understanding of its movement, storage and loss at all points in the hydro-socioeconomic cycle. An integrated approach to addressing the issue of sustainability means quantitatively understanding: the linkages within this cycle, the role of water managers in resource allocation, and the critical factors influencing its scarcity. The Water Evaluation and Planning Tool (WEAP) is an integrative model that combines the catchment-scale hydrologic processes with a water management model, driven by environmental requirements and socioeconomic demands. The concept of demand priorities is included to represent the areas of greatest use within a given catchment. Located on Barbados’ West Coast, Speightstown and the surrounding areas encompass a well-developed tourist, residential and agricultural area. The main water resource for this area, and the rest of the island, is that of groundwater. The availability of groundwater in Barbados may be adversely affected by the projected changes in climate, such as reduced wet season rainfall. Economic development and changing sector priorities together with climate related changes have the potential to affect water resource abundance and by extension the allocation of resources for example in the Speightstown area. In order to investigate the potential impacts on the Speightstown area specifically, a WEAP Model of the study area was developed to estimate the present available water (baseline reference scenario 2000-2010). From this baseline scenario, it is envisioned that an exploration into projected changes in availability in the near term (2035-2045) and medium/long term (2065-2075) time frames will be undertaken. The generated estimations can assist water managers to better evaluate the status of and identify trends in water use and formulate adaptation measures to offset future deficits.

Keywords: water evaluation and planning system (WEAP), water availability, demand and supply, water allocation

Procedia PDF Downloads 354
10888 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 81
10887 Investigating a Modern Accident Analysis Model for Textile Building Fires through Numerical Reconstruction

Authors: Mohsin Ali Shaikh, Weiguo Song, Rehmat Karim, Muhammad Kashan Surahio, Muhammad Usman Shahid

Abstract:

Fire investigations face challenges due to the complexity of fire development, and real-world accidents lack repeatability, making it difficult to apply standardized approaches. The unpredictable nature of fires and the unique conditions of each incident contribute to the complexity, requiring innovative methods and tools for effective analysis and reconstruction. This study proposes to provide the modern accident analysis model through numerical reconstruction for fire investigation in textile buildings. This method employs computer simulation to enhance the overall effectiveness of textile-building investigations. The materials and evidence collected from past incidents reconstruct fire occurrences, progressions, and catastrophic processes. The approach is demonstrated through a case study involving a tragic textile factory fire in Karachi, Pakistan, which claimed 257 lives. The reconstruction method proves invaluable for determining fire origins, assessing losses, establishing accountability, and, significantly, providing preventive insights for complex fire incidents.

Keywords: fire investigation, numerical simulation, fire safety, fire incident, textile building

Procedia PDF Downloads 69
10886 Developing a Web-Based Workflow Management System in Cloud Computing Platforms

Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.

Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System

Procedia PDF Downloads 311
10885 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines

Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.

Keywords: automotive flows, flame propagation, combustion modelling, CNG

Procedia PDF Downloads 295
10884 Reciprocity and Empathy in Motivating Altruism among Sixth Grade Students

Authors: Rylle Evan Gabriel Zamora, Micah Dennise Malia, Abygail Deniese Villabona

Abstract:

The primary motivators of altruism are usually viewed as mutually exclusive. In this study, we wanted to know if the two primary motivators, reciprocity and empathy, can work together in motivating altruism. Therefore, we wanted to find out if there is a significant interaction of effects between reciprocity and empathy. To show how this may occur, we devised the combined altruism model, which is based on Batson’s empathy altruism hypothesis. A sample of 120, 6th-grade students were randomly selected and then randomly assigned to four treatment groups. A 2x2 between subjects’ design was used, which had empathy and reciprocity as independent variables, and altruism as the dependent variable. The study made use of materials that were effort based, where subjects were required to complete a task or a puzzle to help a person in a given scenario, two videos, one to prime empathy were also used. This along with Witt & Boleman’s adapted Self-Reported Altruism Scale was used to determine an individual’s altruism. It was found that both variables were significant in motivating altruism, with empathy being the greater of the two. However, there was no significant interaction of effects between the two variables. To explain why this occurred, we turned to the combined altruism model, where it was found that when empathically primed, we tend to not think of ourselves when helping others. Future studies could focus on other variables, especially age which is said to be one of the greatest factors that influenced the results of the experiment.

Keywords: reciprocity, empathy, altruism, experimental psychology, social psychology

Procedia PDF Downloads 252
10883 Impact of Mass Rape on HIV Incidence and Prevalence in Conflict Situations: Mathematical Analysis of the War in Tigray, Ethiopia

Authors: Abdelkadir Muzey Mohammed, Habtu Alemayehu Atsbaha, Yohannes Yirga Kefela, Woldegebriel Assefa Woldegerima, Kiros Tedla Gebrehiwot

Abstract:

The circumstances of war and conflict have long been associated with concerns about heightening HIV infection due to the use of sexual violence and rape as a weapon of war and lack of health services access to the patients with HIV as well as sexual violence and rape victims. This paper examines the impact of war related mass rape on HIV incidence and prevalence in the war ravaged Tigray, Ethiopia. Risk equation model and uncertainty analyses with sampled ranges of parameters were employed using data from WHO, Ethiopian Public Health Institute and Ethiopian Central Statistical Agency was used. Our analysis indicated that the mass rape committed in Tigray could cause an increase of incidence and prevalence by a median of 63.01% and 1.14% respectively. The significant increase in HIV incidence and prevalence due to mass rape demands a special attention including region wide improved surveillance and tracing of rape survivors. Furthermore, HIV prevention and treatment strategies such as delivery of emergency health service, providing pre and post exposure treatments on the basis of human rights should priority of governmental and nongovernmental organizations in a conflict situation.

Keywords: conflict situation, mass rape, HIV, mathematical model, uncertainty analysis

Procedia PDF Downloads 23
10882 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation

Authors: Jonghyuk Yoon, Hyoungwoon Song

Abstract:

Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).

Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient

Procedia PDF Downloads 140
10881 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 189
10880 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 234
10879 Liposome Sterile Filtration Fouling: The Impact of Transmembrane Pressure on Performance

Authors: Hercules Argyropoulos, Thomas F. Johnson, Nigel B Jackson, Kalliopi Zourna, Daniel G. Bracewell

Abstract:

Lipid encapsulation has become essential in drug delivery, notably for mRNA vaccines during the COVID-19 pandemic. However, their sterile filtration poses challenges due to the risk of deformation, filter fouling and product loss from adsorption onto the membrane. Choosing the right filtration membrane is crucial to maintain sterility and integrity while minimizing product loss. The objective of this study is to develop a rigorous analytical framework utilizing confocal microscopy and filtration blocking models to elucidate the fouling mechanisms of liposomes as a model system for this class of delivery vehicle during sterile filtration, particularly in response to variations in transmembrane pressure (TMP) during the filtration process. Experiments were conducted using fluorescent Lipoid S100 PC liposomes formulated by micro fluidization and characterized by Multi-Angle Dynamic Light Scattering. Dual-layer PES/PES and PES/PVDF membranes with 0.2 μm pores were used for filtration under constant pressure, cycling from 30 psi to 5 psi and back to 30 psi, with 5, 6, and 5-minute intervals. Cross-sectional membrane samples were prepared by microtome slicing and analyzed with confocal microscopy. Liposome characterization revealed a particle size range of 100-140 nm and an average concentration of 2.93x10¹¹ particles/mL. Goodness-of-fit analysis of flux decline data at varying TMPs identified the intermediate blocking model as most accurate at 30 psi and the cake filtration model at 5 psi. Membrane resistance analysis showed atypical behavior compared to therapeutic proteins, with resistance remaining below 1.38×10¹¹ m⁻¹ at 30 psi, increasing over fourfold at 5 psi, and then decreasing to 1-1.3-fold when pressure was returned to 30 psi. This suggests that increased flow/shear deforms liposomes enabling them to more effectively navigate membrane pores. Confocal microscopy indicated that liposome fouling mainly occurred in the upper parts of the dual-layer membrane.

Keywords: sterile filtration, membrane resistance, microfluidization, confocal microscopy, liposomes, filtration blocking models

Procedia PDF Downloads 27
10878 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 474
10877 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach

Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.

Keywords: sustainability, system dynamic, power, energy flows, development

Procedia PDF Downloads 62
10876 A Designing 3D Model: Castle of the Mall-Dern

Authors: Nanadcha Sinjindawong

Abstract:

This article discusses the design process of a community mall called Castle of The Mall-dern. The concept behind this mall is to combine elements of a medieval castle with modern architecture. The author aims to create a building that fits into the surroundings while also providing users with the vibes of the ancient era. The total area used for the mall is 4,000 square meters, with three floors. The first floor is 1,500 square meters, the second floor is 1,750 square meters, and the third floor is 750 square meters. Research Aim: The aim of this research is to design a community mall that sells ancient clothes and accessories, and to combine sustainable architectural design with the ideas of ancient architecture in an urban area with convenient transportation. Methodology: The research utilizes qualitative research methods in architectural design. The process begins with calculating the given area and dividing it into different zones. The author then sketches and draws the plan of each floor, adding the necessary rooms based on the floor areas mentioned earlier. The program "SketchUp" is used to create an online 3D model of the community mall, and a physical model is built for presentation purposes on A1 paper, explaining all the details. Findings: The result of this research is a community mall with various amenities. The first floor includes retail shops, clothing stores, a food center, and a service zone. Additionally, there is an indoor garden with a fountain and a tree for relaxation. The second and third floors feature a void in the middle, with a few stores, cafes, restaurants, and studios on the second floor. The third floor is home to the administration and security control room, as well as a community gathering area designed as a public library with a café inside. Theoretical Importance: This research contributes to the field of sustainable architectural design by combining ancient architectural ideas with modern elements. It showcases the potential for creating buildings that blend historical aesthetics with contemporary functionality. Data Collection and Analysis Procedures: The data for this research is collected through a combination of area calculation, sketching, and building a 3D model. The analysis involves evaluating the design based on the allocated area, zoning, and functional requirements for a community mall. Question Addressed: The research addresses the question of how to design a community mall with a theme of ancient Medieval and Victorian eras. It explores how to combine sustainable architectural design principles with historical aesthetics to create a functional and visually appealing space. Conclusion: In conclusion, this research successfully designs a community mall called “Castle of The Mall-dern” that incorporates elements of Medieval and Victorian architecture. The building encompasses various zones, including retail shops, restaurants, community gathering areas, and service zones. It also features an interior garden and a public library within the mall. The research contributes to the field of sustainable architectural design by showcasing the potential for combining ancient architectural ideas with modern elements in an urban setting.

Keywords: 3D model, community mall, modern architecture, medieval architecture

Procedia PDF Downloads 113
10875 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 413
10874 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 307
10873 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 175
10872 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation

Procedia PDF Downloads 142
10871 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 115
10870 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 97
10869 Transcranial Electric Field Treatments on Redox-Toxic Iron Deposits in Transgenic Alzheimer’s Disease Mouse Models: The Electroceutical Targeting of Alzheimer’s Disease

Authors: Choi Younshick, Lee Wonseok, Lee Jaemeun, Park Sun-Hyun, Kim Sunwoung, Park Sua, Kim Eun Ho, Kim Jong-Ki

Abstract:

Iron accumulation in the brain accelerates Alzheimer’s disease progression. To cure iron toxicity, we assessed the therapeutic effects of noncontact transcranial electric field stimulation to the brain on toxic iron deposits in either the Aβ-fibril structure or the Aβ plaque in a mouse model of Alzheimer’s disease (AD). A capacitive electrode-based alternating electric field (AEF) was applied to a suspension of magnetite (Fe₃O₄) to measure the field-sensitized electro-Fenton effect and resultant reactive oxygen species (ROS) generation. The increase in ROS generation compared to the untreated control was both exposure-time and AEF-frequency dependent. The frequency-specific exposure of AEF to 0.7–1.4 V/cm on a magnetite-bound Aβ-fibril or a transgenic Alzheimer’s disease (AD) mouse model revealed the removal of intraplaque ferrous magnetite iron deposit and Aβ-plaque burden together at the same time compared to the untreated control. The results of the behavioral tests show an improvement in impaired cognitive function following AEF treatment on the AD mouse model. Western blot assay found some disease-modifying biological responses, including down-regulating ferroptosis, neuroinflammation and reactive astrocytes that eventually made cognitive improvement feasible. Tissue clearing and 3D-imaging analysis revealed no induced damage to the neuronal structures of normal brain tissue following AEF treatment. In conclusion, our results suggest that the effective degradation of magnetite-bound amyloid fibrils or plaques in the AD brain by the electro-Fenton effect from electric field-sensitized magnetite offers a potential electroceutical treatment option for AD.

Keywords: electroceutical, intraplaque magnetite, alzheimer’s disease, transcranial electric field, electro-fenton effect

Procedia PDF Downloads 76
10868 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 83