Search results for: learning integration
3246 Development and Implementation of E-Disease Surveillance Systems for Public Health Southern Africa: A Critical Review
Authors: Taurai T. Chikotie, Bruce W. Watson
Abstract:
The manifestation of ‘new’ infectious diseases and the re-emergence of ‘old’ infectious diseases now present global problems and Southern Africa has not been spared from such calamity. Although having an organized public health system, countries in this region have failed to leverage on the proliferation in use of Information and Communication Technologies to promote effective disease surveillance. Objective: The objective of this study was to critically review and analyse the crucial variables to consider in the development and implementation of electronic disease surveillance systems in public health within the context of Southern Africa. Methodology: A critical review of literature published in English using, Google Scholar, EBSCOHOST, Science Direct, databases from the Centre for Disease Control (CDC and articles from the World Health Organisation (WHO) was undertaken. Manual reference and grey literature searches were also conducted. Results: Little has been done towards harnessing the potential of information technologies towards disease surveillance and this has been due to several challenges that include, lack of funding, lack of health informatics experts, poor supporting infrastructure, an unstable socio-political and socio-economic ecosystem in the region and archaic policies towards integration of information technologies in public health governance. Conclusion: The Southern African region stands to achieve better health outcomes if they adopt the use of e-disease surveillance systems in public health. However, the dynamics and complexities of the socio-economic, socio-political and technical variables would need addressing to ensure the successful development and implementation of e-disease surveillance systems in the region.Keywords: critical review, disease surveillance, public health informatics, Southern Africa
Procedia PDF Downloads 2813245 Research on the Evolutionary Character of Capital in Rural Areas and Counter-Measure of Planning
Authors: Han Song, Tingting Wei, Dong Chen
Abstract:
The combination of capital and rural areas in China has shown its great significance in promoting urban-rural integration and new-style urbanization, enhancing regional capacity for sustainable rural development and optimizing human settlement environment. The purpose of this study is to find capital operation mechanism in rural area and rural planning guidance in China. Based on case studies in Chinese rural areas, two types of capital operation mechanism in rural areas are summed up: intervention in the field of agriculture promoting the upgrading and innovation of agricultural industry chain, intervention in rural life and leisure areas updating rural connotation and form. In the light of experiences in Japan and Taiwan, it is proposed that government's norms and guidance, rural investment intensity and rural self-organization are three important factors for capital to drive rural development. It is also found that the unique land tenure and rural governance tradition are two important factors effecting the combination of capital and rural regions in China, which requires full attention in rational policy-making and rural planning. It comes to a conclusion as four directions of the overall reform of the rural planning: targeting at enhancing the viability of rural and sustainable capacity, encouraging differences in investment incentives and planning policies, providing land usage in the rural areas with planning support and reforming the village system. Directional guidance is also made for different types of capital investments, suggesting that capital should be rooted in agriculture and rural land to benefit farmers and update human settlements.Keywords: capital, rural areas, rural planning, rural governance
Procedia PDF Downloads 4463244 Challenges of School Leadership
Authors: Stefan Ninković
Abstract:
The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.Keywords: educational changes, leaders, leadership, school
Procedia PDF Downloads 3363243 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 1763242 Music Listening in Dementia: Current Developments and the Potential for Automated Systems in the Home: Scoping Review and Discussion
Authors: Alexander Street, Nina Wollersberger, Paul Fernie, Leonardo Muller, Ming Hung HSU, Helen Odell-Miller, Jorg Fachner, Patrizia Di Campli San Vito, Stephen Brewster, Hari Shaji, Satvik Venkatesh, Paolo Itaborai, Nicolas Farina, Alexis Kirke, Sube Banerjee, Eduardo Reck Miranda
Abstract:
Escalating neuropsychiatric symptoms (NPS) in people with dementia may lead to earlier care home admission. Music listening has been reported to stimulate cognitive function, potentially reducing agitation in this population. We present a scoping review, reporting on current developments and discussing the potential for music listening with related technology in managing agitation in dementia care. Of two searches for music listening studies, one focused on older people or people living with dementia where music listening interventions, including technology, were delivered in participants’ homes or in institutions to address neuropsychiatric symptoms, quality of life and independence. The second included any population focusing on the use of music technology for health and wellbeing. In search one 70/251 full texts were included. The majority reported either statistical significance (6, 8.5%), significance (17, 24.2%) or improvements (26, 37.1%). Agitation was specifically reported in 36 (51.4%). The second search included 51/99 full texts, reporting improvement (28, 54.9%), significance (11, 21.5%), statistical significance (1, 1.9%) and no difference compared to the control (6, 11.7%). The majority in the first focused on mood and agitation, and the second on mood and psychophysiological responses. Five studies used AI or machine learning systems to select music, all involving healthy controls and reporting benefits. Most studies in both reviews were not conducted in a home environment (review 1 = 12; 17.1%; review 2 = 11; 21.5%). Preferred music listening may help manage NPS in the care home settings. Based on these and other data extracted in the review, a reasonable progression would be to co-design and test music listening systems and protocols for NPS in all settings, including people’s homes. Machine learning and automated technology for music selection and arousal adjustment, driven by live biodata, have not been explored in dementia care. Such approaches may help deliver the right music at the appropriate time in the required dosage, reducing the use of medication and improving quality of life.Keywords: music listening, dementia, agitation, scoping review, technology
Procedia PDF Downloads 1123241 An Analytical Review of Tourism Management in India with Special Reference to Maharashtra State
Authors: Anilkumar L. Rathod
Abstract:
This paper examines event tourism as a field of study and area of professional practice updating the previous review article published in 2015. In this substantially extended review, a deeper analysis of the field's evolution and development is presented, charting the growth of the literature, focusing both chronologically and thematically. A framework for understanding and creating knowledge about events and tourism is presented, forming the basis which signposts established research themes and concepts and outlines future directions for research. In addition, the review article focuses on constraining and propelling forces, ontological advances, contributions from key journals, and emerging themes and issues. It also presents a roadmap for research activity in event tourism. Published scholarly studies within this period are examined through content analysis, using such keywords as knowledge management, organizational learning, hospitality, tourism, tourist destinations, travel industry, hotels, lodging, motels, hotel industry, gaming, casino hotel and convention to search scholarly research journals. All contributions found are then screened for a hospitality and tourism theme. Researchers mostly discuss knowledge management approach in improving information technology, marketing and strategic planning in order to gain competitive advantage. Overall, knowledge management research is still limited. Planned events in tourism are created for a purpose, and what was once the realm of individual and community initiatives has largely become the realm of professionals and entrepreneurs provides a typology of the four main categories of planned events within an event-tourism context, including the main venues associated with each. It also assesses whether differences exist between socio-demographic groupings. An analysis using primarily descriptive statistics indicated both sub-samples had similar viewpoints although Maharashtra residents tended to have higher scores pertaining to the consequences of gambling. It is suggested that the differences arise due to the greater exposure of Maharashtra residents to the influences of casino development.Keywords: organizational learning, hospitality, tourism, tourist destinations, travel industry, hotels, lodging, motels, hotel industry, gaming, casino hotel and convention to search scholarly research journals
Procedia PDF Downloads 2383240 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features
Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng
Abstract:
Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.Keywords: HTML5, web worker, canvas, web socket
Procedia PDF Downloads 3003239 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection
Procedia PDF Downloads 2283238 Beyond Juridical Approaches: The Role of Sociological Approach in Promoting Human Rights of Migrants
Authors: Ali Aghahosseini Dehaghani
Abstract:
Every year in this globalized world, thousands of migrants leave their countries hoping to find a better situation of life in other parts of the world. In this regard, many questions, from a human rights point of view, have been raised about how this phenomenon should be managed in the host countries. Although legal approaches such as legislation and litigation are inevitable in the way to respect the human rights of migrants, there is an increasing consensus about the fact that a strict juridical approach is inadequate to protect as well as to prevent violations of migrants’ rights. Indeed, given the multiplicity of factors that affect and shape the application of these rights and considering the fact that law is a social phenomenon, what is needed is an interdisciplinary approach, which combines both juridical approaches and perspectives from other disciplines. In this respect, a sociological approach is important because it shows the social processes through which human rights of migrants have been constructed or violated in particular social situations. Sociologists who study international migration ask the questions such as how many people migrate, who migrates, why people migrate, what happens to them once they arrive in the host country, how migration affects sending and receiving communities, the extent to which migrants help the economy, the effects of migration on crimes, and how migrants change the local communities. This paper is an attempt to show how sociology can promote human rights of migrants. To this end, the article first explores the usefulness and value of an interdisciplinary approach to realize how and to what extent sociology may improve and promote the human rights of migrants in the destination country. It then examines mechanisms which help to reach to a systematic integration of law and sociological discipline to advance migrants’ rights as well as to encourage legal scholars to consider the implications of societal structures in their works.Keywords: human rights, migrants, sociological approach, interdisciplinary study
Procedia PDF Downloads 4543237 Knowledge-driven Integration of Meat Storage and Safety Practices among College of Science Undergraduate Students of Polytechnic University of the Philippines – Sta. Mesa
Authors: Erwin L. Descallar
Abstract:
Food safety is crucial in protecting the health of consumers, maintaining integrity in the entire food industry, and ensuring regulatory compliance. Food is a universal need for survival, and everyone is at risk of engaging in improper food handling, which increases vulnerability to foodborne illnesses. The level of knowledge or awareness and meat storage practices of students are behaviors influenced by various demographic factors. The Health Belief Model examines the relationship of such demographic factors towards the attitude, perception, and actions of individuals on perceived risk. This study aims to analyze and understand the correlation of said behaviors with course programs, prior food poisoning experience, and food handling of university students. The study employed randomized responses from 89 university students (n=89) under the College of Science at the Polytechnic University of the Philippines–Sta. Mesa (Manila). The results were subjected to measures of central tendency for score ranking and inferential statistics. The statistics were compared using Pearson ‘r’ Product Moment Correlation to determine the degree of relationship between the knowledge and practices on meat storage and safety. No statistically significant differences were found between the course program of students, food poisoning experiences, level of knowledge, and awareness regarding proper meat storage practices. However, increased frequency and involvement in meat handling have shown a positive correlation, indicating that there is a correlation between food handling and proper meat storage practices of university students.Keywords: meat storage practices, food handling, food safety, meat science and technology
Procedia PDF Downloads 73236 Integrating a Six Thinking Hats Approach Into the Prewriting Stage of Argumentative Writing In English as a Foreign Language: A Chinese Case Study of Generating Ideas in Action
Abstract:
Argumentative writing is the most prevalent genre in diverse writing tests. How to construct academic arguments is often regarded as a difficult task by most English as a foreign language (EFL) learners. A failure to generate enough ideas and organise them coherently and logically as well as a lack of competence in supporting their arguments with relevant evidence are frequent problems faced by EFL learners when approaching an English argumentative writing task. Overall, these problems are closely related to planning, and planning an argumentative writing at pre-writing stage plays a vital role in a good academic essay. However, how teachers can effectively guide students to generate ideas is rarely discussed in planning English argumentative writing, apart from brainstorming. Brainstorming has been a common practice used by teachers to help students generate ideas. However, some limitations of brainstorming suggest that it can help students generate many ideas, but ideas might not necessarily be coherent and logic, and could sometimes impede production. It calls for a need to explore effective instructional strategies at pre-writing stage of English argumentative writing. This paper will first examine how a Six Thinking Hats approach can be used to provide a dialogic space for EFL learners to experience and collaboratively generate ideas from multiple perspectives at pre-writing stage. Part of the findings of the impact of a twelve-week intervention (from March to July 2021) on students learning to generate ideas through engaging in group discussions of using Six Thinking Hats will then be reported. The research design is based on the sociocultural theory. The findings present evidence from a mixed-methods approach and fifty-nine participants from two first-year undergraduate natural classes in a Chinese university. Analysis of pre- and post- questionnaires suggests that participants had a positive attitude toward the Six Thinking Hats approach. It fosters their understanding of prewriting and argumentative writing, helps them to generate more ideas not only from multiple perspectives but also in a systematic way. A comparison of participants writing plans confirms an improvement in generating counterarguments and rebuttals to support their arguments. Above all, visual and transcripts data of group discussion collected from different weeks throughout the intervention enable teachers and researchers to ‘see’ the hidden process of learning to generate ideas in action.Keywords: argumentative writing, innovative pedagogy, six thinking hats, dialogic space, prewriting, higher education
Procedia PDF Downloads 873235 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)
Authors: Wafa' Slaibi Alsharafat
Abstract:
Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection
Procedia PDF Downloads 4743234 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique
Authors: S. Jalaja, A. M. Vijaya Prakash
Abstract:
Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.Keywords: carry save adder Karatsuba multiplication, mid range Karatsuba multiplication, modified FFA and transposed filter, retiming
Procedia PDF Downloads 2353233 People Management, Knowledge Sharing and Intermediary Variables
Authors: Nizar Mansour, Chiha Gaha, Emna Gara
Abstract:
The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia
Procedia PDF Downloads 3323232 Development of a Web-Based Application for Intelligent Fertilizer Management in Rice Cultivation
Authors: Hao-Wei Fu, Chung-Feng Kao
Abstract:
In the era of rapid technological advancement, information technology (IT) has become integral to modern life, exerting significant influence across diverse sectors and serving as a catalyst for development in various industries. Within agriculture, the integration of IT offers substantial benefits, notably enhancing operational efficiency. Real-time monitoring systems, for instance, have been widely embraced in agriculture, effectively improving crop management practices. This study specifically addresses the management of rice panicle fertilizer, presenting the development of a web application tailored to handle data associated with rice panicle fertilizer management. Leveraging the normalized difference red edge index, this application optimizes the quantity of rice panicle fertilizer used, providing recommendations to agricultural stakeholders and service providers in the agricultural information sector. The overarching objective is to minimize costs while maximizing yields. Furthermore, a robust database system has been established to store and manage relevant data for future reference in rice cultivation management. Additionally, the study utilizes the Representational State Transfer software architectural style to construct an application programming interface (API), facilitating data creation, retrieval, updating, and deletion for users via the HyperText Transfer Protocol methods. Future plans involve integrating this API with third-party services to incorporate it into larger frameworks, thus catering to the diverse requirements of various third-party services.Keywords: application programming interface, HyperText Transfer Protocol, nitrogen fertilizer intelligent management, web-based application
Procedia PDF Downloads 613231 Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy
Authors: Giorgio Visentin, Alexei A. Buchachenko
Abstract:
Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466.Keywords: ab initio coupled cluster methods, interaction potential, semi-analytical function, ytterbium dimer
Procedia PDF Downloads 1543230 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1343229 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1253228 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities
Authors: Claire Biasco, Thaier Hayajneh
Abstract:
A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.Keywords: blockchain, IoT, smart city, DAO
Procedia PDF Downloads 1213227 Genome Editing in Sorghum: Advancements and Future Possibilities: A Review
Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie
Abstract:
The advancement of target-specific genome editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), mega-nucleases, base editing (BE), prime editing (PE), transcription activator-like endonucleases (TALENs), and zinc-finger nucleases (ZFNs), have paved the way for a modern era of gene editing. CRISPR/Cas9, as a versatile, simple, cost-effective and robust system for genome editing, has dominated the genome manipulation field over the last few years. The application of CRISPR/Cas9 in sorghum improvement is particularly vital in the context of ecological, environmental and agricultural challenges, as well as global climate change. In this context, gene editing using CRISPR/Cas9 can improve nutritional value, yield, resistance to pests and disease and tolerance to different abiotic stress. Moreover, CRISPR/Cas9 can potentially perform complex editing to reshape already available elite varieties and new genetic variations. However, existing research is targeted at improving even further the effectiveness of the CRISPR/Cas9 genome editing techniques to fruitfully edit endogenous sorghum genes. These findings suggest that genome editing is a feasible and successful venture in sorghum. Newer improvements and developments of CRISPR/Cas9 techniques have further qualified researchers to modify extra genes in sorghum with improved efficiency. The fruitful application and development of CRISPR techniques for genome editing in sorghum will not only help in gene discovery, creating new, improved traits in sorghum regulating gene expression sorghum functional genomics, but also in making site-specific integration events.Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield
Procedia PDF Downloads 593226 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3353225 CDIO-Based Teaching Reform for Software Project Management Course
Authors: Liping Li, Wenan Tan, Na Wang
Abstract:
With the rapid development of information technology, project management has gained more and more attention recently. Based on CDIO, this paper proposes some teaching reform ideas for software project management curriculum. We first change from Teacher-centered classroom to Student-centered and adopt project-driven, scenario animation show, teaching rhythms, case study and team work practice to improve students' learning enthusiasm. Results showed these attempts have been well received and very effective; as well, students prefer to learn with this curriculum more than before the reform.Keywords: CDIO, teaching reform, engineering education, project-driven, scenario animation simulation
Procedia PDF Downloads 4293224 Applied Linguistics: Language, Corpora, and Technology
Authors: M. Imran
Abstract:
This research explores the intersections of applied linguistics, corpus linguistics, translation, and technology, aiming to present innovative cross-disciplinary tools and frameworks. It highlights significant contributions to language, corpora, and technology within applied linguistics, which deepen our understanding of these domains and provide practical resources for scholars, educators, and translators. By showcasing these advancements, the study seeks to enhance collaboration and application in language-related fields. The significance of applied linguistics is emphasized by some of the research that has been emphasized, which presents pedagogical perspectives that could enhance instruction and the learning results of student’s at all academic levels as well as translation trainees. Researchers provided useful data from language studies with classroom applications from an instructional standpoint.Keywords: linguistics, language, corpora, technology
Procedia PDF Downloads 133223 Student Absenteeism as a Challenge for Inclusion: A Comparative Study of Primary Schools in an Urban City in India
Authors: Deepa Idnani
Abstract:
Attendance is an important factor in school success among children. Studies show that better attendance is related to higher academic achievement for students of all backgrounds, but particularly for children with lower socio-economic status. Beginning from the early years, students who attend school regularly score higher on tests than their peers who are frequently absent. The present study in different types of School In Delhi tries to highlight the impact of student absenteeism and the challenges it poses for the students. The study relies on Lewin ‘Model of Exclusion’ and tries to focus on the analysis of children with special needs and the inclusion and exclusion of students in the school.Keywords: student absenteeism, pedagogy, learning, right to education act, exclusion
Procedia PDF Downloads 2973222 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.Keywords: energy building design tools, solar access analysis, solar potential, urban planning
Procedia PDF Downloads 3403221 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi
Abstract:
Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.Keywords: RFID, asset tracking system, MongoDB, NoSQL
Procedia PDF Downloads 3063220 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management
Authors: Ezgi Şendil
Abstract:
Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.Keywords: disaster, NLP, postdisaster management, sentiment analysis
Procedia PDF Downloads 753219 Application of Metric Dimension of Graph in Unraveling the Complexity of Hyperacusis
Authors: Hassan Ibrahim
Abstract:
The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. We constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.Keywords: auditory condition, connected graph, hyperacusis, metric dimension
Procedia PDF Downloads 383218 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 833217 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones
Authors: Kazuhisa Takagi
Abstract:
This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.Keywords: dynamic mathematical object, javascript, google drive, transfer jet
Procedia PDF Downloads 260