Search results for: strategic transport planning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6338

Search results for: strategic transport planning

248 The Impact of the Virtual Learning Environment on Teacher's Pedagogy and Student's Learning in Primary School Setting

Authors: Noor Ashikin Omar

Abstract:

The rapid growth and advancement in information and communication technology (ICT) at a global scene has greatly influenced and revolutionised interaction amongst society. The use of ICT has become second nature in managing everyday lives, particularly in the education environment. Traditional learning methods of using blackboards and chalks have been largely improved by the use of ICT devices such as interactive whiteboards and computers in school. This paper aims to explore the impacts of virtual learning environments (VLE) on teacher’s pedagogy and student’s learning in primary school settings. The research was conducted in two phases. Phase one of this study comprised a short interview with the school’s senior assistants to examine issues and challenges faced during planning and implementation of FrogVLE in their respective schools. Phase two involved a survey of a number of questionnaires directed to three major stakeholders; the teachers, students and parents. The survey intended to explore teacher’s and student’s perspective and attitude towards the use of VLE as a teaching and learning medium and as a learning experience as a whole. In addition, the survey from parents provided insights on how they feel towards the use of VLE for their child’s learning. Collectively, the two phases enable improved understanding and provided observations on factors that had affected the implementation of the VLE into primary schools. This study offers the voices of the students which were frequently omitted when addressing innovations as well as teachers who may not always be heard. It is also significant in addressing the importance of teacher’s pedagogy on students’ learning and its effects to enable more effective ICT integration with a student-centred approach. Finally, parental perceptions in the implementation of VLE in supporting their children’s learning have been implicated as having a bearing on educational achievement. The results indicate that the all three stakeholders were positive and highly supportive towards the use of VLE in schools. They were able to understand the benefits of moving towards the modern method of teaching using ICT and accept the change in the education system. However, factors such as condition of ICT facilities at schools and homes as well as inadequate professional development for the teachers in both ICT skills and management skills hindered exploitation of the VLE system in order to fully utilise its benefits. Social influences within different communities and cultures and costs of using the technology also has a significant impact. The findings of this study are important to the Malaysian Ministry of Education because it informs policy makers on the impact of the Virtual Learning Environment (VLE) on teacher’s pedagogy and learning of Malaysian primary school children. The information provided to policy makers allows them to make a sound judgement and enables an informed decision making.

Keywords: attitudes towards virtual learning environment (VLE), parental perception, student's learning, teacher's pedagogy

Procedia PDF Downloads 205
247 India’s Neighborhood Policy and the Northeast: Exploratory Study of the Nagas in the Indo-Myanmar Border

Authors: Sachoiba Inkah

Abstract:

The Northeast region has not been a major factor in India’s foreign policy calculation since independence. Instead, the region was ignored and marginalized even to the extent of using force and repressive Acts such as AFSPA(Armed Forces Special Powers Act) to suppress the voices of both states and non-state actors. The liberalization of the economy in the 90s in the wake of globalization gave India a new outlook and the Look East Policy (LEP) was a paradigm shift in India’s engagement with the Southeast Asian nations as it seeks to explore the benefits of the ASEAN. The reorienting of India’s foreign policy to ‘Neighborhood First” is attributed to the present political dispensation, which is further widened to include ‘Extended Neighborhood.’ As a result, the Northeastern states have become key players in India’s participation in regional groupings such as SAARC, BIMSTEC, and BCIM. The need for external balancing, diplomacy and development has reset India’s foreign policy priorities as the Northeast states lie in the confluence of South Asia, Southeast and East Asia, and a stakeholder in Act East Policy. The paper will explore the role of Northeastern states in the framework of Indian foreign policy as it shares international boundaries with China, Bhutan, Bangladesh, and Myanmar and most importantly, study the case of Nagas who are spread across Manipur, Nagaland, and Arunachal Pradesh bordering Myanmar. The Indo-Myanmar border is an area of conflict and various illegal activities such as arms trafficking, illegal migrants, drug, and human trafficking are still being carried out and in order to address this issue, both India and Myanmar need to take into consideration the various communities living across the border. And conflict and insurgency should not be a yardstick to curtailed development of infrastructures such as roads, health facilities, transport, and communication in the contested region. The realities, perceptions, and contentions of the Northeastern states and the different communities living in the border areas need a wider discourse as the region the potential to drive India’s diplomatic relations with its neighbors and extended neighborhood. The methods employed are analytical and more of a descriptive analysis on India’s foreign policy framework with a focus on Nagas in Myanmar, drawing from both primary and secondary sources. Primary sources include official documents, data, and statistics released by various governmental agencies, parliamentary debates, political speeches, press releases, treaties and agreements, historical biographies and organizational policy papers, protocols and procedures of government conferences, regional organization study reports etc. The paper concludes that the recent proactive engagement between India and Myanmar on trade, defense, economic, and infrastructure development are positive signs cementing bilateral ties, but there is not much room for the people-to-people connect, especially for people living in the borderland. The Freedom of Movement Regime that is in place is limited and there is more scope for improvement as people in the borderland looks towards trade and commerce to not only uplift the border economy but also act as a catalyst for robust engagement between the two countries, albeit with more infrastructure such as road, healthcare, education, a tourist hotspot, trade centers, mobile connectivity, etc.

Keywords: foreign policy, infrastructure development, insurgency, people to people connect

Procedia PDF Downloads 197
246 Attachment Theory and Quality of Life: Grief Education and Training

Authors: Jane E. Hill

Abstract:

Quality of life is an important component for many. With that in mind, everyone will experience some type of loss within his or her lifetime. A person can experience loss due to break up, separation, divorce, estrangement, or death. An individual may experience loss of a job, loss of capacity, or loss caused by human or natural-caused disasters. An individual’s response to such a loss is unique to them, and not everyone will seek services to assist them with their grief due to loss. Counseling can promote positive outcomes for clients that are grieving by addressing the client’s personal loss and helping the client process their grief. However, a lack of understanding on the part of counselors of how people grieve may result in negative client outcomes such as poor health, psychological distress, or an increased risk of depression. Education and training in grief counseling can improve counselors’ problem recognition and skills in treatment planning. The purpose of this study was to examine whether the Council for Accreditation of Counseling and Related Educational Programs (CACREP) master’s degree counseling students view themselves as having been adequately trained in grief theories and skills. Many people deal with grief issues that prevent them from having joy or purpose in their lives and that leaves them unable to engage in positive opportunities or relationships. This study examined CACREP-accredited master’s counseling students’ self-reported competency, training, and education in providing grief counseling. The implications for positive social change arising from the research may be to incorporate and promote education and training in grief theories and skills in a majority of counseling programs and to provide motivation to incorporate professional standards for grief training and practice in the mental health counseling field. The theoretical foundation used was modern grief theory based on John Bowlby’s work on Attachment Theory. The overall research question was how competent do master’s-level counselors view themselves regarding the education or training they received in grief theories or counseling skills in their CACREP-accredited studies. The author used a non-experimental, one shot survey comparative quantitative research design. Cicchetti’s Grief Counseling Competency Scale (GCCS) was administered to CACREP master’s-level counseling students enrolled in their practicum or internship experience, which resulted in 153 participants. Using a MANCOVA, there was significance found for relationships between coursework taken and (a) perceived assessment skills (p = .029), (b) perceived treatment skills (p = .025), and (c) perceived conceptual skills and knowledge (p = .003). Results of this study provided insight for CACREP master’s-level counseling programs to explore and discuss curriculum coursework inclusion of education and training in grief theories and skills.

Keywords: counselor education and training, grief education and training, grief and loss, quality of life

Procedia PDF Downloads 191
245 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape

Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca

Abstract:

ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.

Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)

Procedia PDF Downloads 109
244 An Integrated Real-Time Hydrodynamic and Coastal Risk Assessment Model

Authors: M. Reza Hashemi, Chris Small, Scott Hayward

Abstract:

The Northeast Coast of the US faces damaging effects of coastal flooding and winds due to Atlantic tropical and extratropical storms each year. Historically, several large storm events have produced substantial levels of damage to the region; most notably of which were the Great Atlantic Hurricane of 1938, Hurricane Carol, Hurricane Bob, and recently Hurricane Sandy (2012). The objective of this study was to develop an integrated modeling system that could be used as a forecasting/hindcasting tool to evaluate and communicate the risk coastal communities face from these coastal storms. This modeling system utilizes the ADvanced CIRCulation (ADCIRC) model for storm surge predictions and the Simulating Waves Nearshore (SWAN) model for the wave environment. These models were coupled, passing information to each other and computing over the same unstructured domain, allowing for the most accurate representation of the physical storm processes. The coupled SWAN-ADCIRC model was validated and has been set up to perform real-time forecast simulations (as well as hindcast). Modeled storm parameters were then passed to a coastal risk assessment tool. This tool, which is generic and universally applicable, generates spatial structural damage estimate maps on an individual structure basis for an area of interest. The required inputs for the coastal risk model included a detailed information about the individual structures, inundation levels, and wave heights for the selected region. Additionally, calculation of wind damage to structures was incorporated. The integrated coastal risk assessment system was then tested and applied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode Island. The modeling system was applied to Hurricane Sandy and a synthetic storm. In both storm cases, effect of natural dunes on coastal risk was investigated. The resulting damage maps for the area (Charlestown) clearly showed that the dune eroded scenarios affected more structures, and increased the estimated damage. The system was also tested in forecast mode for a large Nor’Easters: Stella (March 2017). The results showed a good performance of the coupled model in forecast mode when compared to observations. Finally, a nearshore model XBeach was then nested within this regional grid (ADCIRC-SWAN) to simulate nearshore sediment transport processes and coastal erosion. Hurricane Irene (2011) was used to validate XBeach, on the basis of a unique beach profile dataset at the region. XBeach showed a relatively good performance, being able to estimate eroded volumes along the beach transects with a mean error of 16%. The validated model was then used to analyze the effectiveness of several erosion mitigation methods that were recommended in a recent study of coastal erosion in New England: beach nourishment, coastal bank (engineered core), and submerged breakwater as well as artificial surfing reef. It was shown that beach nourishment and coastal banks perform better to mitigate shoreline retreat and coastal erosion.

Keywords: ADCIRC, coastal flooding, storm surge, coastal risk assessment, living shorelines

Procedia PDF Downloads 115
243 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 230
242 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies

Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour

Abstract:

The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.

Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop

Procedia PDF Downloads 138
241 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach

Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira

Abstract:

Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.

Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers

Procedia PDF Downloads 155
240 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 196
239 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 184
238 Assessing the Impact of Frailty in Elderly Patients Undergoing Emergency Laparotomies in Singapore

Authors: Zhao Jiashen, Serene Goh, Jerry Goo, Anthony Li, Lim Woan Wui, Paul Drakeford, Chen Qing Yan

Abstract:

Introduction: Emergency laparotomy (EL) is one of the most common surgeries done in Singapore to treat acute abdominal pathologies. A significant proportion of these surgeries are performed in the geriatric population (65 years and older), who tend to have the highest postoperative morbidity, mortality, and highest utilization of intensive care resources. Frailty, the state of vulnerability to adverse outcomes from an accumulation of physiological deficits, has been shown to be associated with poorer outcomes after surgery and remains a strong driver of healthcare utilization and costs. To date, there is little understanding of the impact it has on emergency laparotomy outcomes. The objective of this study is to examine the impact of frailty on postoperative morbidity, mortality, and length of stay after EL. Methods: A retrospective study was conducted in two tertiary centres in Singapore, Tan Tock Seng Hospital and Khoo Teck Puat Hospital the period from January to December 2019. Patients aged 65 years and above who underwent emergency laparotomy for intestinal obstruction, perforated viscus, bowel ischaemia, adhesiolysis, gastrointestinal bleed, or another suspected acute abdomen were included. Laparotomies performed for trauma, cholecystectomy, appendectomy, vascular surgery, and non-GI surgery were excluded. The Clinical Frailty Score (CFS) developed by the Canadian Study of Health and Aging (CSHA) was used. A score of 1 to 4 was defined as non-frail and 5 to 7 as frail. We compared the clinical outcomes of elderly patients in the frail and non-frail groups. Results: There were 233 elderly patients who underwent EL during the study period. Up to 26.2% of patients were frail. Patients who were frail (CFS 5-9) tend to be older, 79 ± 7 vs 79 ± 5 years of age, p <0.01. Gender distribution was equal in both groups. Indication for emergency laparotomies, time from diagnosis to surgery, and presence of consultant surgeons and anaesthetists in the operating theatre were comparable (p>0.05). Patients in the frail group were more likely to receive postoperative geriatric assessment than in the non-frail group, 49.2% vs. 27.9% (p<0.01). The postoperative complications were comparable (p>0.05). The length of stay in the critical care unit was longer for the frail patients, 2 (IQR 1-6.5) versus 1 (IQR 0-4) days, p<0.01. Frailty was found to be an independent predictor of 90-day mortality but not age, OR 2.9 (1.1-7.4), p=0.03. Conclusion: Up to one-fourth of the elderly who underwent EL were frail. Patients who were frail were associated with a longer length of stay in the critical care unit and a 90-day mortality rate of more than three times that of their non-frail counterparts. PPOSSUM was a better predictor of 90-day mortality in the non-frail group than in the frail group. As frailty scoring was a significant predictor of 90-day mortality, its integration into acute surgical units to facilitate shared decision-making and discharge planning should be considered.

Keywords: frailty elderly, emergency, laparotomy

Procedia PDF Downloads 144
237 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom

Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap

Abstract:

The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.

Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity

Procedia PDF Downloads 67
236 Modelling of Meandering River Dynamics in Colombia: A Case Study of the Magdalena River

Authors: Laura Isabel Guarin, Juliana Vargas, Philippe Chang

Abstract:

The analysis and study of Open Channel flow dynamics for River applications has been based on flow modelling using discreet numerical models based on hydrodynamic equations. The overall spatial characteristics of rivers, i.e. its length to depth to width ratio generally allows one to correctly disregard processes occurring in the vertical or transverse dimensions thus imposing hydrostatic pressure conditions and considering solely a 1D flow model along the river length. Through a calibration process an accurate flow model may thus be developed allowing for channel study and extrapolation of various scenarios. The Magdalena River in Colombia is a large river basin draining the country from South to North with 1550 km with 0.0024 average slope and 275 average width across. The river displays high water level fluctuation and is characterized by a series of meanders. The city of La Dorada has been affected over the years by serious flooding in the rainy and dry seasons. As the meander is evolving at a steady pace repeated flooding has endangered a number of neighborhoods. This study has been undertaken in pro of correctly model flow characteristics of the river in this region in order to evaluate various scenarios and provide decision makers with erosion control measures options and a forecasting tool. Two field campaigns have been completed over the dry and rainy seasons including extensive topographical and channel survey using Topcon GR5 DGPS and River Surveyor ADCP. Also in order to characterize the erosion process occurring through the meander, extensive suspended and river bed samples were retrieved as well as soil perforation over the banks. Hence based on DEM ground digital mapping survey and field data a 2DH flow model was prepared using the Iber freeware based on the finite volume method in a non-structured mesh environment. The calibration process was carried out comparing available historical data of nearby hydrologic gauging station. Although the model was able to effectively predict overall flow processes in the region, its spatial characteristics and limitations related to pressure conditions did not allow for an accurate representation of erosion processes occurring over specific bank areas and dwellings. As such a significant helical flow has been observed through the meander. Furthermore, the rapidly changing channel cross section as a consequence of severe erosion has hindered the model’s ability to provide decision makers with a valid up to date planning tool.

Keywords: erosion, finite volume method, flow dynamics, flow modelling, meander

Procedia PDF Downloads 318
235 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites

Authors: A. Kavita Murugkar, B. Anurag Kashyap

Abstract:

With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.

Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience

Procedia PDF Downloads 106
234 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems

Authors: A. G. Akhundov

Abstract:

Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.

Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning

Procedia PDF Downloads 188
233 Teachers’ Instructional Decisions When Teaching Geometric Transformations

Authors: Lisa Kasmer

Abstract:

Teachers’ instructional decisions shape the structure and content of mathematics lessons and influence the mathematics that students are given the opportunity to learn. Therefore, it is important to better understand how teachers make instructional decisions and thus find new ways to help practicing and future teachers give their students a more effective and robust learning experience. Understanding the relationship between teachers’ instructional decisions and their goals, resources, and orientations (beliefs) is important given the heightened focus on geometric transformations in the middle school mathematics curriculum. This work is significant as the development and support of current and future teachers need more effective ways to teach geometry to their students. The following research questions frame this study: (1) As middle school mathematics teachers plan and enact instruction related to teaching transformations, what thinking processes do they engage in to make decisions about teaching transformations with or without a coordinate system and (2) How do the goals, resources and orientations of these teachers impact their instructional decisions and reveal about their understanding of teaching transformations? Teachers and students alike struggle with understanding transformations; many teachers skip or hurriedly teach transformations at the end of the school year. However, transformations are an important mathematical topic as this topic supports students’ understanding of geometric and spatial reasoning. Geometric transformations are a foundational concept in mathematics, not only for understanding congruence and similarity but for proofs, algebraic functions, and calculus etc. Geometric transformations also underpin the secondary mathematics curriculum, as features of transformations transfer to other areas of mathematics. Teachers’ instructional decisions in terms of goals, orientations, and resources that support these instructional decisions were analyzed using open-coding. Open-coding is recognized as an initial first step in qualitative analysis, where comparisons are made, and preliminary categories are considered. Initial codes and categories from current research on teachers’ thinking processes that are related to the decisions they make while planning and reflecting on the lessons were also noted. Surfacing ideas and additional themes common across teachers while seeking patterns, were compared and analyzed. Finally, attributes of teachers’ goals, orientations and resources were identified in order to begin to build a picture of the reasoning behind their instructional decisions. These categories became the basis for the organization and conceptualization of the data. Preliminary results suggest that teachers often rely on their own orientations about teaching geometric transformations. These beliefs are underpinned by the teachers’ own mathematical knowledge related to teaching transformations. When a teacher does not have a robust understanding of transformations, they are limited by this lack of knowledge. These shortcomings impact students’ opportunities to learn, and thus disadvantage their own understanding of transformations. Teachers’ goals are also limited by their paucity of knowledge regarding transformations, as these goals do not fully represent the range of comprehension a teacher needs to teach this topic well.

Keywords: coordinate plane, geometric transformations, instructional decisions, middle school mathematics

Procedia PDF Downloads 87
232 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 88
231 Tourism Policy Challenges in Post-Soviet Georgia

Authors: Merab Khokhobaia

Abstract:

The research of Georgian tourism policy challenges is important, as the tourism can play an increasing role for the economic growth and improvement of standard of living of the country even with scanty resources, at the expense of improved creative approaches. It is also important to make correct decisions at macroeconomic level, which will be accordingly reflected in the successful functioning of the travel companies and finally, in the improvement of economic indicators of the country. In order to correctly orient sectoral policy, it is important to precisely determine its role in the economy. Development of travel industry has been considered as one of the priorities in Georgia; the country has unique cultural heritage and traditions, as well as plenty of natural resources, which are a significant precondition for the development of tourism. Despite the factors mentioned above, the existing resources are not completely utilized and exploited. This work represents a study of subjective, as well as objective reasons of ineffective functioning of the sector. During the years of transformation experienced by Georgia, the role of travel industry in economic development of the country represented the subject of continual discussions. Such assessments were often biased and they did not rest on specific calculations. This topic became especially popular on the ground of market economy, because reliable statistical data have a particular significance in the designing of tourism policy. In order to deeply study the aforementioned issue, this paper analyzes monetary, as well as non-monetary indicators. The research widely included the tourism indicators system; we analyzed the flaws in reporting of the results of tourism sector in Georgia. Existing defects are identified and recommendations for their improvement are offered. For stable development tourism, similarly to other economic sectors, needs a well-designed policy from the perspective of national, as well as local, regional development. The tourism policy must be drawn up in order to efficiently achieve our goals, which were established in short-term and long-term dynamics on the national or regional scale of specific country. The article focuses on the role and responsibility of the state institutes in planning and implementation of the tourism policy. The government has various tools and levers, which may positively influence the processes. These levers are especially important in terms of international, as well as internal tourism development. Within the framework of this research, the regulatory documents, which are in force in relation to this industry, were also analyzed. The main attention is turned to their modernization and necessity of their compliance with European standards. It is a current issue to direct the efforts of state policy on support of business by implementing infrastructural projects, as well as by development of human resources, which may be possible by supporting the relevant higher and vocational studying-educational programs.

Keywords: regional development, tourism industry, tourism policy, transition

Procedia PDF Downloads 261
230 Embracing the Uniqueness and Potential of Each Child: Moving Theory to Practice

Authors: Joy Chadwick

Abstract:

This Study of Teaching and Learning (SoTL) research focused on the experiences of teacher candidates involved in an inclusive education methods course within a four-year direct entry Bachelor of Education program. The placement of this course within the final fourteen-week practicum semester is designed to facilitate deeper theory-practice connections between effective inclusive pedagogical knowledge and the real life of classroom teaching. The course focuses on supporting teacher candidates to understand that effective instruction within an inclusive classroom context must be intentional, responsive, and relational. Diversity is situated not as exceptional but rather as expected. This interpretive qualitative study involved the analysis of twenty-nine teacher candidate reflective journals and six individual teacher candidate semi-structured interviews. The journal entries were completed at the start of the semester and at the end of the semester with the intent of having teacher candidates reflect on their beliefs of what it means to be an effective inclusive educator and how the course and practicum experiences impacted their understanding and approaches to teaching in inclusive classrooms. The semi-structured interviews provided further depth and context to the journal data. The journals and interview transcripts were coded and themed using NVivo software. The findings suggest that instructional frameworks such as universal design for learning (UDL), differentiated instruction (DI), response to intervention (RTI), social emotional learning (SEL), and self-regulation supported teacher candidate’s abilities to meet the needs of their students more effectively. Course content that focused on specific exceptionalities also supported teacher candidates to be proactive rather than reactive when responding to student learning challenges. Teacher candidates also articulated the importance of reframing their perspective about students in challenging moments and that seeing the individual worth of each child was integral to their approach to teaching. A persisting question for teacher educators exists as to what pedagogical knowledge and understanding is most relevant in supporting future teachers to be effective at planning for and embracing the diversity of student needs within classrooms today. This research directs us to consider the critical importance of addressing personal attributes and mindsets of teacher candidates regarding children as well as considering instructional frameworks when designing coursework. Further, the alignment of an inclusive education course during a teaching practicum allows for an iterative approach to learning. The practical application of course concepts while teaching in a practicum allows for a deeper understanding of instructional frameworks, thus enhancing the confidence of teacher candidates. Research findings have implications for teacher education programs as connected to inclusive education methods courses, practicum experiences, and overall teacher education program design.

Keywords: inclusion, inclusive education, pre-service teacher education, practicum experiences, teacher education

Procedia PDF Downloads 68
229 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 282
228 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer

Authors: Harpreet Singh Kainth

Abstract:

Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).

Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer

Procedia PDF Downloads 505
227 Evaluation of Batch Splitting in the Context of Load Scattering

Authors: S. Wesebaum, S. Willeke

Abstract:

Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.

Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering

Procedia PDF Downloads 398
226 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 141
225 Investigating the Urban Heat Island Phenomenon in A Desert City Aiming at Sustainable Buildings

Authors: Afifa Mohammed, Gloria Pignatta, Mattheos Santamouris, Evangelia Topriska

Abstract:

Climate change is one of the global challenges that is exacerbated by the rapid growth of urbanizations. Urban Heat Island (UHI) phenomenon can be considered as an effect of the urbanization and it is responsible together with the Climate change of the overheating of urban cities and downtowns. The purpose of this paper is to quantify and perform analysis of UHI Intensity in Dubai, United Arab Emirates (UAE), through checking the relationship between the UHI and different meteorological parameters (e.g., temperature, winds speed, winds direction). Climate data were collected from three meteorological stations in Dubai (e.g., Dubai Airport - Station 1, Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3) for a period of five years (e.g., 2014 – 2018) based upon hourly rates, and following clustering technique as one of the methodology tools of measurements. The collected data of each station were divided into six clusters upon the winds directions, either from the seaside or from the desert side, or from the coastal side which is in between both aforementioned winds sources, to investigate the relationship between temperature degrees and winds speed values through UHI measurements for Dubai Airport - Station 1 compared with the same of Al-Maktoum Airport - Station 2. In this case, the UHI value is determined by the temperature difference of both stations, where Station 1 is considered as located in an urban area and Station 2 is considered as located in a suburban area. The same UHI calculations has been applied for Al-Maktoum Airport - Station 2 and Saih Salem - Station 3 where Station 2 is considered as located in an urban area and Station 3 is considered as located in a suburban area. The performed analysis aims to investigate the relation between the two environmental parameters (e.g., Temperature and Winds Speed) and the Urban Heat Island (UHI) intensity when the wind comes from the seaside, from the desert, and the remaining directions. The analysis shows that the correlation between the temperatures with both UHI intensity (e.g., temperature difference between Dubai Airport - Station 1 and Saih Al-Salem - Station 3 and between Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3 (through station 1 & 2) is strong and has a negative relationship when the wind is coming from the seaside comparing between the two stations 1 and 2, while the relationship is almost zero (no relation) when the wind is coming from the desert side. The relation is independent between the two parameters, e.g., temperature and UHI, on Station 2, during the same procedures, the correlation between the urban heat island UHI phenomenon and wind speed is weak for both stations when wind direction is coming from the seaside comparing the station 1 and 2, while it was found that there’s no relationship between urban heat island phenomenon and wind speed when wind direction is coming from desert side. The conclusion could be summarized saying that the wind coming from the seaside or from the desert side have a different effect on UHI, which is strongly affected by meteorological parameters. The output of this study will enable more determination of UHI phenomenon under desert climate, which will help to inform about the UHI phenomenon and intensity and extract recommendations in two main categories such as planning of new cities and designing of buildings.

Keywords: meteorological data, subtropical desert climate, urban climate, urban heat island (UHI)

Procedia PDF Downloads 134
224 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 125
223 Proposed Design Principles for Low-Income Housing in South Africa

Authors: Gerald Steyn

Abstract:

Despite the huge number of identical, tiny, boxy, freestanding houses built by the South African government after the advent of democracy in 1994, squatter camps continue to mushroom, and there is no evidence that the backlog is being reduced. Not only is the wasteful low-density detached-unit approach of the past being perpetuated, but the social, spatial, and economic marginalization is worse than before 1994. The situation is precarious since squatters are vulnerable to fires and flooding. At the same time, the occupants of the housing schemes are trapped far from employment opportunities or any public amenities. Despite these insecurities, the architectural, urban design, and city planning professions are puzzlingly quiet. Design projects address these issues only at the universities, albeit inevitably with somewhat Utopian notions. Geoffrey Payne, the renowned urban housing and urban development consultant and researcher focusing on issues in the Global South, once proclaimed that “we do not have a housing problem – we have a settlement problem.” This dictum was used as the guiding philosophy to conceptualize urban design and architectural principles that foreground the needs of low-income households and allow them to be fully integrated into the larger conurbation. Information was derived from intensive research over two decades, involving frequent visits to informal settlements, historic Black townships, and rural villages. Observations, measured site surveys, and interviews resulted in several scholarly articles from which a set of desirable urban and architectural criteria could be extracted. To formulate culturally appropriate design principles, existing vernacular and informal patterns were analyzed, reconciled with contemporary designs that align with the requirements for the envisaged settlement attributes, and reimagined as residential design principles. Five interrelated design principles are proposed, ranging in scale from (1) Integrating informal settlements into the city, (2) linear neighborhoods, (3) market streets as wards, (4) linear neighborhoods, and (5) typologies and densities for clustered and aggregated patios and courtyards. Each design principle is described, first in terms of its context and associated issues of concern, followed by a discussion of the patterns available to inform a possible solution, and finally, an explanation and graphic illustration of the proposed design. The approach is predominantly bottom-up since each of the five principles is unfolded from existing informal and vernacular practices studied in situ. They are, however, articulated and represented in terms of contemporary design language. Contrary to an idealized vision of housing for South Africa’s low-income urban households, this study proposes actual principles for critical assessment by peers in the tradition of architectural research in design.

Keywords: culturally appropriate design principles, informal settlements, South Africa’s housing backlog, squatter camps

Procedia PDF Downloads 47
222 The Lighthouse Project: Recent Initiatives to Navigate Australian Families Safely Through Parental Separation

Authors: Kathryn McMillan

Abstract:

A recent study of 8500 adult Australians aged 16 and over revealed 62% had experienced childhood maltreatment. In response to multiple recommendations by bodies such as the Australian Law Reform Commission, parliamentary reports and stakeholder input, a number of key initiatives have been developed to grapple with the difficulties of a federal-state system and to screen and triage high-risk families navigating their way through the court system. The Lighthouse Project (LHP) is a world-first initiative of the Federal Circuit and Family Courts in Australia (FCFOCA) to screen family law litigants for major risk factors, including family violence, child abuse, alcohol or substance abuse and mental ill-health at the point of filing in all applications that seek parenting orders. It commenced on 7 December 2020 on a pilot basis but has now been expanded to 15 registries across the country. A specialist risk screen, Family DOORS, Triage has been developed – focused on improving the safety and wellbeing of families involved in the family law system safety planning and service referral, and ¬ differentiated case management based on risk level, with the Evatt List specifically designed to manage the highest risk cases. Early signs are that this approach is meeting the needs of families with multiple risks moving through the Court system. Before the LHP, there was no data available about the prevalence of risk factors experienced by litigants entering the family courts and it was often assumed that it was the litigation process that was fueling family violence and other risks such as suicidality. Data from the 2022 FCFCOA annual report indicated that in parenting proceedings, 70% alleged a child had been or was at risk of abuse, 80% alleged a party had experienced Family Violence, 74 % of children had been exposed to Family Violence, 53% alleged through substance misuse by party children had caused or was at risk of causing harm to children and 58% of matters allege mental health issues of a party had caused or placed a child at risk of harm. Those figures reveal the significant overlap between child protection and family violence, both of which are under the responsibility of state and territory governments. Since 2020, a further key initiative has been the co-location of child protection and police officials amongst a number of registries of the FCFOCA. The ability to access in a time-effective way details of family violence or child protection orders, weapons licenses, criminal convictions or proceedings is key to managing issues across the state and federal divide. It ensures a more cohesive and effective response to family law, family violence and child protection systems.

Keywords: child protection, family violence, parenting, risk screening, triage.

Procedia PDF Downloads 76
221 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 114
220 Urban Park Characteristics Defining Avian Community Structure

Authors: Deepti Kumari, Upamanyu Hore

Abstract:

Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.

Keywords: diversity, feeding guild, urban park, urbanization intensity

Procedia PDF Downloads 118
219 The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver, and Pancreatic Grafts

Authors: Constantinos S. Mammas, Andreas Lazaris, Adamantia S. Mamma-Graham, Georgia Kostopanagiotou, Chryssa Lemonidou, John Mantas, Eustratios Patsouris

Abstract:

The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the evaluation of the grafts. Α high percentage of solid organs arrive at the recipient hospitals and are considered as injured or improper for transplantation in the UK. Digital microscopy adds information on a microscopic level about the grafts (G) in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G will arrive at the recipient hospital for implantation. Aim: The aim of this study is to analyze the ergonomics of digital microscopy (DM) based on virtual slides, on telemedicine systems (TS) for tele-pathological evaluation (TPE) of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of renal graft (RG), liver graft (LG) and pancreatic graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying virtual slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included the development of an OTE-TS similar experimental telemedicine system (Exp.-TS) for simulating the integrated VS based microscopic TPE of RG, LG and PG Simulation of DM on TS based TPE performed by 2 specialists on a total of 238 human renal graft (RG), 172 liver graft (LG) and 108 pancreatic graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to accurately diagnose the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a desktop, followed by the ES of the applied Exp.-TS. Tablet and mobile-phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and awareness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval, seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning.

Keywords: digital microscopy, organ transplantation, tele-pathology, virtual slides

Procedia PDF Downloads 278