Search results for: groundwater flow and contaminant transport modeling
4106 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 824105 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1494104 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 2524103 Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector
Authors: Reema Jain
Abstract:
Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid.Keywords: nanofluids, nanoparticles, heat transfer, solar collector
Procedia PDF Downloads 3234102 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 1914101 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.Keywords: regression, piecewise, Bayesian, reversible Jump MCMC
Procedia PDF Downloads 5214100 Enhancement Performance of Desalination System Using Humidification and Dehumidification Processes
Authors: Zeinab Syed Abdel Rehim
Abstract:
Water shortage is considered as one of the huge problems the world encounter now. Water desalination is considered as one of the more suitable methods governments can use to substitute the increased need for potable water. The humidification-dehumidification process for water desalination is viewed as a promising technique for small capacity production plants. The process has several attraction features which include the use of sustainable energy sources, low technology, and low-temperature dehumidification. A pilot experimental set-up plant was constructed with the conventional HVAC components such as air blower that supplies air to an air duct inside which air preheater, steam injector and cooling coil of a small refrigeration unit are placed. The present work evaluates the characteristics of humidification-dehumidification process for water desalination as a function of air flow rate, total power input and air inlet temperature in order to study the optimum conditions required to produce distilled water.Keywords: condensation, dehumidification, evaporation, humidification, water desalination
Procedia PDF Downloads 2434099 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines
Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky
Abstract:
Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods
Procedia PDF Downloads 1134098 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes
Authors: Mahsa Oroojeni Mohammad Javad
Abstract:
Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes
Procedia PDF Downloads 804097 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5584096 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams
Authors: Fares Jnaid, Riyad Aboutaha
Abstract:
In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.Keywords: FEA, ANSYS, unbond, strain
Procedia PDF Downloads 2534095 Modeling and Power Control of DFIG Used in Wind Energy System
Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri
Abstract:
Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability
Procedia PDF Downloads 3794094 Removal of Lead in High Rate Activated Sludge System
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda
Abstract:
The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt
Procedia PDF Downloads 5184093 Multi-Criteria Goal Programming Model for Sustainable Development of India
Authors: Irfan Ali, Srikant Gupta, Aquil Ahmed
Abstract:
Every country needs a sustainable development (SD) for its economic growth by forming suitable policies and initiative programs for the development of different sectors of the country. This paper is comprised of modeling and optimization of different sectors of India that form a multi-criterion model. In this paper, we developed a fractional goal programming (FGP) model that helps in providing the efficient allocation of resources simultaneously by achieving the sustainable goals in gross domestic product (GDP), electricity consumption (EC) and greenhouse gasses (GHG) emission by the year 2030. Also, a weighted model of FGP is presented to obtain varying solution according to the priorities set by the policy maker for achieving future goals of GDP growth, EC, and GHG emission. The presented models provide a useful insight to the decision makers for implementing strategies in a different sector.Keywords: sustainable and economic development, multi-objective fractional programming, fuzzy goal programming, weighted fuzzy goal programming
Procedia PDF Downloads 2234092 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 4804091 Carbon Emission Reduction by Compact City Construction in Toyama, Japan
Authors: Benyan Jiang, Dawei Xia, Yong Li
Abstract:
Compact city construction is considered as an effective measure to reduce carbon emission in city lives. Toyama City started its compact city strategy in 2000 and was selected as a Japanese Environmental Model City in 2008 for its achievement. This paper takes Toyama as a study case, aiming to find how city polices affected people’s life styles and reduced carbon emission. The main materials used in this study are first-hand documents, like urban planning materials, government annual report and statistic data from transportation association. It is found that the main measures taken by Toyama City include the construction of light rail transit, increasing the frequency of buses, building park and ride parking lots. In addition to hardware facilities, it also offers flexible policies like passengers' coupons for the senior citizens and free use of parking lots by buying shopping vouchers. Besides, Toyama City encourages citizens to live within 500 meters of public transportation. People who buy an apartment near public transportation will receive 500,000 Japanese Yen. These measures have proven to their effects. Compared with 2005, in 2014, the transportation sector reduced emissions of 2.35 million tons of CO₂, 13.6%. This aspect is related to the increase in the number of cars in public transport and also related to fuel improvement.Keywords: Toyama, compact city, public transportation, CO₂ reduction
Procedia PDF Downloads 1424090 IT Systems of the US Federal Courts, Justice, and Governance
Authors: Joseph Zernik
Abstract:
The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.Keywords: e-justice, federal courts, human rights, banking regulation, United States
Procedia PDF Downloads 3784089 Predicting the Relationship Between Childhood Trauma on the Formation of Defense Mechanisms with the Mediating Role of Object Relations in Traders
Authors: Ahmadreza Jabalameli, Mohammad Ebrahimpour Borujeni
Abstract:
According to psychodynamic theories, the major personality structure of individuals is formed in the first years of life. Trauma is an inseparable and undeniable part of everyone's life and they inevitably struggle with many traumas that can have a very significant impact on their lives. The present study deals with the relationship between childhood trauma on the formation of defense mechanisms and the role of object relations. The present descriptive study is a correlation with structural equation modeling (SEM). Sample selection is available and consists of 200 knowledgeable traders in Jabalameli Information Technology Company. The results indicate that the experience of childhood trauma with a demographic moderating effect, through the mediating role of object relations can lead to vulnerability to ego reality functionality and immature and psychically disturbed defense mechanisms. In this regard, there is a significant negative relationship between childhood trauma and object relations with mature defense mechanisms.Keywords: childhood trauma, defense mechanisms, object relations, trade
Procedia PDF Downloads 1324088 A Qualitative Study of Experienced Early Childhood Teachers Resolving Workplace Challenges with Character Strengths
Authors: Michael J. Haslip
Abstract:
Character strength application improves performance and well-being in adults across industries, but the potential impact of character strength training among early childhood educators is mostly unknown. To explore how character strengths are applied by early childhood educators at work, a qualitative study was completed alongside professional development provided to a group of in-service teachers of children ages 0-5 in Philadelphia, Pennsylvania, United States. Study participants (n=17) were all female. The majority of participants were non-white, in full-time lead or assistant teacher roles, had at least ten years of experience and a bachelor’s degree. Teachers were attending professional development weekly for 2 hours over a 10-week period on the topic of social and emotional learning and child guidance. Related to this training were modules and sessions on identifying a teacher’s character strength profile using the Values in Action classification of 24 strengths (e.g., humility, perseverance) that have a scientific basis. Teachers were then asked to apply their character strengths to help resolve current workplace challenges. This study identifies which character strengths the teachers reported using most frequently and the nature of the workplace challenges being resolved in this context. The study also reports how difficult these challenges were to the teachers and their success rate at resolving workplace challenges using a character strength application plan. The study also documents how teachers’ own use of character strengths relates to their modeling of these same traits (e.g., kindness, teamwork) for children, especially when the nature of the workplace challenge directly involves the children, such as when addressing issues of classroom management and behavior. Data were collected on action plans (reflective templates) which teachers wrote to explain the work challenge they were facing, the character strengths they used to address the challenge, their plan for applying strengths to the challenge, and subsequent results. Content analysis and thematic analysis were used to investigate the research questions using approaches that included classifying, connecting, describing, and interpreting data reported by educators. Findings reveal that teachers most frequently use kindness, leadership, fairness, hope, and love to address a range of workplace challenges, ranging from low to high difficulty, involving children, coworkers, parents, and for self-management. Teachers reported a 71% success rate at fully or mostly resolving workplace challenges using the action plan method introduced during professional development. Teachers matched character strengths to challenges in different ways, with certain strengths being used mostly when the challenge involved children (love, forgiveness), others mostly with adults (bravery, teamwork), and others universally (leadership, kindness). Furthermore, teacher’s application of character strengths at work involved directly modeling character for children in 31% of reported cases. The application of character strengths among early childhood educators may play a significant role in improving teacher well-being, reducing job stress, and improving efforts to model character for young children.Keywords: character strengths, positive psychology, professional development, social-emotional learning
Procedia PDF Downloads 1054087 Novel Formal Verification Based Coverage Augmentation Technique
Authors: Surinder Sood, Debajyoti Mukherjee
Abstract:
Formal verification techniques have become widely popular in pre-silicon verification as an alternate to constrain random simulation based techniques. This paper proposed a novel formal verification-based coverage augmentation technique in verifying complex RTL functional verification faster. The proposed approach relies on augmenting coverage analysis coming from simulation and formal verification. Besides this, the functional qualification framework not only helps in improving the coverage at a faster pace but also aids in maturing and qualifying the formal verification infrastructure. The proposed technique has helped to achieve faster verification sign-off, resulting in faster time-to-market. The design picked had a complex control and data path and had many configurable options to meet multiple specification needs. The flow is generic, and tool independent, thereby leveraging across the projects and design will be much easierKeywords: COI (cone of influence), coverage, formal verification, fault injection
Procedia PDF Downloads 1244086 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine
Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix
Abstract:
As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions
Procedia PDF Downloads 744085 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents
Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera
Abstract:
The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast
Procedia PDF Downloads 2544084 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 1704083 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis
Authors: Pragyan Paramita Das, Vishwas N. Khatri
Abstract:
By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.Keywords: bearing capacity, conic programming, finite elements, seismic forces
Procedia PDF Downloads 1704082 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems
Authors: Brian J. Biroscak
Abstract:
In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling
Procedia PDF Downloads 794081 Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media
Authors: Nour Ismail, Sahar El Kardawy, Bassant Badwy
Abstract:
Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in a nonhomogenous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and nonhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of a nonhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size.Keywords: finite element model, nerve lesioning, pain relief, radiofrequency lesion
Procedia PDF Downloads 4164080 Dynamical Analysis of the Fractional-Order Mathematical Model of Hashimoto’s Thyroiditis
Authors: Neelam Singha
Abstract:
The present work intends to analyze the system dynamics of Hashimoto’s thyroiditis with the assistance of fractional calculus. Hashimoto’s thyroiditis or chronic lymphocytic thyroiditis is an autoimmune disorder in which the immune system attacks the thyroid gland, which gradually results in interrupting the normal thyroid operation. Consequently, the feedback control of the system gets disrupted due to thyroid follicle cell lysis. And, the patient perceives life-threatening clinical conditions like goiter, hyperactivity, euthyroidism, hyperthyroidism, etc. In this work, we aim to obtain the approximate solution to the posed fractional-order problem describing Hashimoto’s thyroiditis. We employ the Adomian decomposition method to solve the system of fractional-order differential equations, and the solutions obtained shall be useful to provide information about the effect of medical care. The numerical technique is executed in an organized manner to furnish the associated details of the progression of the disease and to visualize it graphically with suitable plots.Keywords: adomian decomposition method, fractional derivatives, Hashimoto's thyroiditis, mathematical modeling
Procedia PDF Downloads 2114079 Effect of Temperature on the Permeability and Time-Dependent Change in Thermal Volume of Bentonite Clay During the Heating-Cooling Cycle
Authors: Nilufar Chowdhury, Fereydoun Najafian Jazi, Omid Ghasemi-Fare
Abstract:
The thermal effect on soil properties induces significant variations in hydraulic conductivity, which is attributable to temperature-dependent transitions in soil properties. With the elevation of temperature, there can be a notable increase in intrinsic permeability due to the degeneration of bound water molecules into a free state facilitated by thermal energy input. Conversely, thermal consolidation may cause a reduction in intrinsic permeability as soil particles undergo densification. This thermal response of soil permeability exhibits pronounced heterogeneity across different soil types. Furthermore, this temperature-induced disruption of the bound water within clay matrices can enhance the mineral-to-mineral contact, initiating irreversible deformation within the clay structure. This indicates that when soil undergoes heating-cooling cycles, plastic strain can develop, which needs to be investigated for every soil type to understand the thermo-hydro mechanical behavior of clay properly. This research aims to study the effect of the heating-cooling cycle on the intrinsic permeability and time-dependent evaluation of thermal volume change of sodium Bentonite clay. A temperature-controlled triaxial permeameter cell is used in this study. The selected temperature is 20° C, 40° C, 40° C and 80° C. The hydraulic conductivity of Bentonite clay under 100 kPa confining stresses was measured. Hydraulic conductivity analysis was performed on a saturated sample for a void ratio e = 0.9, corresponding to a dry density of 1.2 Mg/m3. Different hydraulic gradients were applied between the top and bottom of the sample to obtain a measurable flow through the sample. The hydraulic gradient used for the experiment was 4000. The diameter and thickness of the sample are 101. 6 mm, and 25.4 mm, respectively. Both for heating and cooling, the hydraulic conductivity at each temperature is measured after the flow reaches the steady state condition to make sure the volume change due to thermal loading is stabilized. Thus, soil specimens were kept at a constant temperature during both the heating and cooling phases for at least 10-18 days to facilitate the equilibration of hydraulic transients. To assess the influence of temperature-induced volume changes of Bentonite clay, the evaluation of void ratio change during this time period has been monitored. It is observed that the intrinsic permeability increases by 30-40% during the heating cycle. The permeability during the cooling cycle is 10-12% lower compared to the permeability observed during the heating cycle at a particular temperature. This reduction in permeability implies a change in soil fabric due to the thermal effect. An initial increase followed by a rapid decrease in void ratio was observed, representing the occurrence of possible osmotic swelling phenomena followed by thermal consolidation. It has been observed that after a complete heating-cooling cycle, there is a significant change in the void ratio compared to the initial void ratio of the sample. The results obtained suggest that Bentonite clay’s microstructure can change subject to a complete heating-cooling process, which regulates macro behavior such as the permeability of Bentonite clay.Keywords: bentonite, permeability, temperature, thermal volume change
Procedia PDF Downloads 494078 Development and Characterization of Synthetic Non-Woven for Sound Absorption
Authors: P. Sam Vimal Rajkumar, K. Priyanga
Abstract:
Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient
Procedia PDF Downloads 3014077 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid
Authors: Zahra Majd, Mohsen Kalantar
Abstract:
Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix
Procedia PDF Downloads 91