Search results for: transverse flux PM linear machine
853 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 61852 Detection of Phoneme [S] Mispronounciation for Sigmatism Diagnosis in Adults
Authors: Michal Krecichwost, Zauzanna Miodonska, Pawel Badura
Abstract:
The diagnosis of sigmatism is mostly based on the observation of articulatory organs. It is, however, not always possible to precisely observe the vocal apparatus, in particular in the oral cavity of the patient. Speech processing can allow to objectify the therapy and simplify the verification of its progress. In the described study the methodology for classification of incorrectly pronounced phoneme [s] is proposed. The recordings come from adults. They were registered with the speech recorder at the sampling rate of 44.1 kHz and the resolution of 16 bit. The database of pathological and normative speech has been collected for the study including reference assessments provided by the speech therapy experts. Ten adult subjects were asked to simulate a certain type of stigmatism under the speech therapy expert supervision. In the recordings, the analyzed phone [s] was surrounded by vowels, viz: ASA, ESE, ISI, SPA, USU, YSY. Thirteen MFCC (mel-frequency cepstral coefficients) and RMS (root mean square) values are calculated within each frame being a part of the analyzed phoneme. Additionally, 3 fricative formants along with corresponding amplitudes are determined for the entire segment. In order to aggregate the information within the segment, the average value of each MFCC coefficient is calculated. All features of other types are aggregated by means of their 75th percentile. The proposed method of features aggregation reduces the size of the feature vector used in the classification. Binary SVM (support vector machine) classifier is employed at the phoneme recognition stage. The first group consists of pathological phones, while the other of the normative ones. The proposed feature vector yields classification sensitivity and specificity measures above 90% level in case of individual logo phones. The employment of a fricative formants-based information improves the sole-MFCC classification results average of 5 percentage points. The study shows that the employment of specific parameters for the selected phones improves the efficiency of pathology detection referred to the traditional methods of speech signal parameterization.Keywords: computer-aided pronunciation evaluation, sibilants, sigmatism diagnosis, speech processing
Procedia PDF Downloads 283851 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings
Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller
Abstract:
Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram
Procedia PDF Downloads 265850 Effects of Safety Intervention Program towards Behaviors among Rubber Wood Processing Workers Using Theory of Planned Behavior
Authors: Junjira Mahaboon, Anongnard Boonpak, Nattakarn Worrasan, Busma Kama, Mujalin Saikliang, Siripor Dankachatarn
Abstract:
Rubber wood processing is one of the most important industries in southern Thailand. The process has several safety hazards for example unsafe wood cutting machine guarding, wood dust, noise, and heavy lifting. However, workers’ occupational health and safety measures to promote their behaviors are still limited. This quasi-experimental research was to determine factors affecting workers’ safety behaviors using theory of planned behavior after implementing job safety intervention program. The purposes were to (1) determine factors affecting workers’ behaviors and (2) to evaluate effectiveness of the intervention program. The sample of study was 66 workers from a rubber wood processing factory. Factors in the Theory of Planned Behavior model (TPB) were measured before and after the intervention. The factors of TPB included attitude towards behavior, subjective norm, perceived behavioral control, intention, and behavior. Firstly, Job Safety Analysis (JSA) was conducted and Safety Standard Operation Procedures (SSOP) were established. The questionnaire was also used to collect workers’ characteristics and TPB factors. Then, job safety intervention program to promote workers’ behavior according to SSOP were implemented for a four month period. The program included SSOP training, personal protective equipment use, and safety promotional campaign. After that, the TPB factors were again collected. Paired sample t-test and independent t-test were used to analyze the data. The result revealed that attitude towards behavior and intention increased significantly after the intervention at p<0.05. These factors also significantly determined the workers’ safety behavior according to SSOP at p<0.05. However, subjective norm, and perceived behavioral control were not significantly changed nor related to safety behaviors. In conclusion, attitude towards behavior and workers’ intention should be promoted to encourage workers’ safety behaviors. SSOP intervention program e.g. short meeting, safety training, and promotional campaign should be continuously implemented in a routine basis to improve workers’ behavior.Keywords: job safety analysis, rubber wood processing workers, safety standard operation procedure, theory of planned behavior
Procedia PDF Downloads 193849 Agricultural Cooperative Model: A Panacea for Economic Development of Small Scale Business Famers in Ilesha, Osun State, Nigeria
Authors: Folasade Adegbaju, Olusola Arowolo, Olufisayo Onawumi
Abstract:
Owolowo ile – ege garri processing industry which is a small scale cassava processing industry, located in Ilesha, Osun State was purposively selected as a case study because it is a cooperative business. This industry was established in 1991 by eight men (8) who were mostly retirees. A researcher made questionnaire was used to collect information from thirty (30) respondents: the manager, four official staffs and 25 randomly selected processors in the industry. The study found that within twelve years of the utilization of their self raised initial capital of N240, 000 naira (Two hundred and forty thousand naira) this cassava – based industry had impacted on and attracted the involvement of many more people because within the period of the study (i.e. 2007-2011) the processors had quadrupled in number (e.g. 8 to 30), the facilities (equipment) in use had increased from one machine and a frying pot to many, this translated into being able to produce large quantities of fried garri, fufu and also starch for marketing to the people in Ilesha and neighbouring cities like Ibadan, Lagos, etc. This is indicative of economic growth. The industry also became a source of employment for community members in the sense that, as at the time of study four staffs were employed to work and coordinate the industry. It was observed that despite all odds of small-scale industry and the problem of people migrating from rural to urban area, this agro-based industry still existed successfully in the community, and many of such industry can be replicated by such agricultural cooperative groups nationwide so as to further boost the productivity as well as the economy of the area and nation at large. However, government and individual still have major roles to play in ensuring the growth and development of the nation in this respect.The local agricultural cooperative groups should form regional cooperative consortium with more networking for the farmers, in order to create more jobs for the young ones and to increase agricultural productivity in the country thus resulting in a better and more sustainable economy.Keywords: agricultural cooperative, cassava processing industry, model, small scale enterprise
Procedia PDF Downloads 290848 Mapping the Pain Trajectory of Breast Cancer Survivors: Results from a Retrospective Chart Review
Authors: Wilfred Elliam
Abstract:
Background: Pain is a prevalent and debilitating symptom among breast cancer patients, impacting their quality of life and overall well-being. The experience of pain in this population is multifaceted, influenced by a combination of disease-related factors, treatment side effects, and individual characteristics. Despite advancements in cancer treatment and pain management, many breast cancer patients continue to suffer from chronic pain, which can persist long after the completion of treatment. Understanding the progression of pain in breast cancer patients over time and identifying its correlates is crucial for effective pain management and supportive care strategies. The purpose of this research is to understand the patterns and progression of pain experienced by breast cancer survivors over time. Methods: Data were collected from breast cancer patients at Hartford Hospital at four time points: baseline, 3, 6 and 12 weeks. Key variables measured include pain, body mass index (BMI), fatigue, musculoskeletal pain, sleep disturbance, and demographic variables (age, employment status, cancer stage, and ethnicity). Binomial generalized linear mixed models were used to examine changes in pain and symptoms over time. Results: A total of 100 breast cancer patients aged 18 years old were included in the analysis. We found that the effect of time on pain (p = 0.024), musculoskeletal pain (p= <0.001), fatigue (p= <0.001), and sleep disturbance (p-value = 0.013) were statistically significant with pain progression in breast cancer patients. Patients using aromatase inhibitors have worse fatigue (<0.05) and musculoskeletal pain (<0.001) compared to patients with Tamoxifen. Patients who are obese (<0.001) and overweight (<0.001) are more likely to report pain compared to patients with normal weight. Conclusion: This study revealed the complex interplay between various factors such as time, pain, sleep disturbance in breast cancer patient. Specifically, pain, musculoskeletal pain, sleep disturbance, fatigue exhibited significant changes across the measured time points, indicating a dynamic pain progression in these patients. The findings provide a foundation for future research and targeted interventions aimed at improving pain in breast cancer patient outcomes.Keywords: breast cancer, chronic pain, pain management, quality of life
Procedia PDF Downloads 31847 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data
Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang
Abstract:
Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.Keywords: biomarker, congenital heart defects, DNA methylation, random forest
Procedia PDF Downloads 158846 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)
Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile
Abstract:
Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon
Procedia PDF Downloads 62845 The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures
Authors: Nicky Wilson, Graeme Ralph
Abstract:
Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories
Procedia PDF Downloads 79844 Insecurity and Insurgency on Economic Development of Nigeria
Authors: Uche Lucy Onyekwelu, Uche B. Ugwuanyi
Abstract:
Suffice to say that socio-economic disruptions of any form is likely to affect the wellbeing of the citizenry. The upsurge of social disequilibrium caused by the incessant disruptive tendencies exhibited by youths and some others in Nigeria are not helping matters. In Nigeria the social unrest has caused different forms of draw backs in Socio Economic Development. This study has empirically evaluated the impact of insecurity and insurgency on the Economic Development of Nigeria. The paper noted that the different forms of insecurity in Nigeria are namely: Insurgency and Banditry as witnessed in Northern Nigeria; Militancy: Niger Delta area and self-determination groups pursuing various forms of agenda such as Sit –at- Home Syndrome in the South Eastern Nigeria and other secessionist movements. All these have in one way or the other hampered Economic development in Nigeria. Data for this study were collected through primary and secondary sources using questionnaire and some existing documentations. Cost of investment in different aspects of security outfits in Nigeria represents the independent variable while the differentials in the Gross Domestic Product(GDP) and Human Development Index(HDI) are the measures of the dependent variable. Descriptive statistics and Simple Linear Regression analytical tool were employed in the data analysis. The result revealed that Insurgency/Insecurity negatively affect the economic development of the different parts of Nigeria. Following the findings, a model to analyse the effect of insecurity and insurgency was developed, named INSECUREDEVNIG. It implies that the economic development of Nigeria will continue to deteriorate if insurgency and insecurity continue. The study therefore recommends that the government should do all it could to nurture its human capital, adequately fund the state security apparatus and employ individuals of high integrity to manage the various security outfits in Nigeria. The government should also as a matter of urgency train the security personnel in intelligence cum Information and Communications Technology to enable them ensure the effectiveness of implementation of security policies needed to sustain Gross Domestic Product and Human Capital Index of Nigeria.Keywords: insecurity, insurgency, gross domestic product, human development index, Nigeria
Procedia PDF Downloads 102843 Management Practices and Economic Performance of Smallholder Dairy Cattle Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
Although dairy production in Vietnam is a relatively new agricultural activity, milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to characterize husbandry practices, educational experiences, decision-making practices, constraints, income and expenses of smallholder dairy farms in Southern Vietnam. A total of 200 farms, located in the regions Ho Chi Minh (HCM, N=80 farms), Lam Dong (N=40 farms), Binh Duong (N=40 farms) and Long An (N=40 farms) were included. Between October 2013 and December 2014 farmers were interviewed twice. On average, farms owned 3.200m2, 2.000m2, and 193m2 of pasture, cropping and housing area, respectively. The number of total, milking and dry cows, heifers, and calves were 20.4, 11.6, 4.7, 3.3, and 2.9 head. The number of lactating dairy cows was higher (p<0.001) in HCM (15.5) and Lam Dong (14.7) than in Binh Duong (6.7) and Long An (10.7). Animals were mainly crossbred Holstein-Friesian (HF) cows with at least 75% HF origin (84%), whereas a higher (P<0.001) percentage of purebred HF was found in HCM and Lam Dong and crossbreds in Binh Duong and Long An. Animals were mainly raised in tie-stalls (94%) and machine-milked (80%). Farmers used their own replacement animals (76%), and both genetic and phenotypic information (67%) for selecting sires. Farmers were predominantly educated at primary school level (53%). Major constraints for dairy farming were the lack of capital (43%), diseases (17%), marketing (22%), lack of knowledge (8%) and feed (7%). Monthly profit per lactating cow was superior in Lam Dong (2,817 thousand VND) and HCM (2,798 thousand VND) compared to other regions in Long An (2,597 thousand VND), and Binh Duong (1,775 thousand VND). Regional differences may be mainly attributed to environmental factors, urbanization, and particularly governmental support and the availability of extension and financial institutions. Results from this study provide important information on farming practices of smallholders in Southern Vietnam that are useful in determining regions that need to be addressed by authorities in order to improve dairy production.Keywords: dairy farms, milk yield, Southern Vietnam, socio-economics
Procedia PDF Downloads 465842 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect
Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich
Abstract:
Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking
Procedia PDF Downloads 116841 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy
Authors: A. M. Khourshid, I. Sabry
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure
Procedia PDF Downloads 462840 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells
Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel
Abstract:
Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.
Procedia PDF Downloads 138839 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris
Abstract:
Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging
Procedia PDF Downloads 360838 Integration of the Battery Passport into the eFTI Platform to Improve Digital Data Exchange in the Context of Battery Transport
Authors: Max Plotnikov, Arkadius Schier
Abstract:
To counteract climate change, the European Commission adopted the European Green Deal (EDG) in 2019. Some of the main objectives of the EDG are climate neutrality by 2050, decarbonization, sustainable mobility, and the shift from a linear economy to a circular economy in the European Union. The mobility turnaround envisages, among other things, the switch from classic internal combustion vehicles to electromobility. The aforementioned goals are therefore accompanied by increased demand for lithium-ion batteries (LIBs) and the associated logistics. However, this inevitably gives rise to challenges that need to be addressed. Depending on whether the LIB is transported by road, rail, air, or sea, there are different regulatory frameworks in the European Union that relevant players in the value chain must adhere to. LIBs are classified as Dangerous Goods Class 9, and against this backdrop, there are various restrictions that need to be adhered to when transporting them for various actors. Currently, the exchange of information in the value chain between the various actors is almost entirely paper-based. Especially in the transport of dangerous goods, this often leads to a delay in the transport or to incorrect data. The exchange of information with the authorities is particularly essential in this context. A solution for the digital exchange of information is currently being developed. Electronic freight transport information (eFTI) enables fast and secure exchange of information between the players in the freight transport process. This concept is to be used within the supply chain from 2025. Another initiative that is expected to improve the monitoring of LIB in this context, among other things, is the battery pass. In July 2023, the latest battery regulation was adopted in the Official Journal of the European Union. This battery pass gives different actors static as well as dynamic information about the batteries depending on their access rights. This includes master data such as battery weight or battery category or information on the state of health or the number of negative events that the battery has experienced. The integration of the battery pass with the eFTI platform will be investigated for synergy effects in favor of the actors for battery transport.Keywords: battery logistics, battery passport, data sharing, eFTI, sustainability
Procedia PDF Downloads 80837 An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters
Authors: İlkay Özer Erselcan, Abdi Kükner, Gökhan Ceylan
Abstract:
The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases.Keywords: Black Sea, buoys, hydraulic power take-off system, wave energy converters
Procedia PDF Downloads 351836 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 173835 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study
Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao
Abstract:
Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.Keywords: physical activity, gestational diabetes, self-efficacy, predictors
Procedia PDF Downloads 101834 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia
Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono
Abstract:
Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length
Procedia PDF Downloads 214833 A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses
Authors: Arjun Prakash, Samanvitha H.
Abstract:
BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity.Keywords: digital mammography, breast cancer, ultrasound, elastography
Procedia PDF Downloads 106832 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System
Authors: Nishanthi N. S., Srikanth Vedantam
Abstract:
Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations
Procedia PDF Downloads 140831 Application of Seismic Refraction Method in Geotechnical Study
Authors: Abdalla Mohamed M. Musbahi
Abstract:
The study area lies in Al-Falah area on Airport-Tripoli in Zone (16) Where planned establishment of complex multi-floors for residential and commercial, this part was divided into seven subzone. In each sup zone, were collected Orthogonal profiles by using Seismic refraction method. The overall aim with this project is to investigate the applicability of Seismic refraction method is a commonly used traditional geophysical technique to determine depth-to-bedrock, competence of bedrock, depth to the water table, or depth to other seismic velocity boundaries The purpose of the work is to make engineers and decision makers recognize the importance of planning and execution of a pre-investigation program including geophysics and in particular seismic refraction method. The overall aim with this thesis is achieved by evaluation of seismic refraction method in different scales, determine the depth and velocity of the base layer (bed-rock). Calculate the elastic property in each layer in the region by using the Seismic refraction method. The orthogonal profiles was carried out in every subzones of (zone 16). The layout of the seismic refraction set up is schematically, the geophones are placed on the linear imaginary line whit a 5 m spacing, the three shot points (in beginning of layout–mid and end of layout) was used, in order to generate the P and S waves. The 1st and last shot point is placed about 5 meters from the geophones and the middle shot point is put in between 12th to 13th geophone, from time-distance curve the P and S waves was calculated and the thickness was estimated up to three-layers. As we know any change in values of physical properties of medium (shear modulus, bulk modulus, density) leads to change waves velocity which passing through medium where any change in properties of rocks cause change in velocity of waves. because the change in properties of rocks cause change in parameters of medium density (ρ), bulk modulus (κ), shear modulus (μ). Therefore, the velocity of waves which travel in rocks have close relationship with these parameters. Therefore we can estimate theses parameters by knowing primary and secondary velocity (p-wave, s-wave).Keywords: application of seismic, geotechnical study, physical properties, seismic refraction
Procedia PDF Downloads 491830 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things
Authors: Christos Konstantopoulos, Thomas Ussmueller
Abstract:
Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators
Procedia PDF Downloads 145829 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure
Authors: Adriano Losso, Birgit Dämon, Stefan Mayr
Abstract:
In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.Keywords: conifers, Picea abies, Pinus mugo, timberline
Procedia PDF Downloads 294828 Three Issues for Integrating Artificial Intelligence into Legal Reasoning
Authors: Fausto Morais
Abstract:
Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning
Procedia PDF Downloads 145827 Effect of Primer on Bonding between Resin Cement and Zirconia Ceramic
Authors: Deog-Gyu Seo, Jin-Soo Ahn
Abstract:
Objectives: Recently, the development of adhesive primers on stable bonding between zirconia and resin cement has been on the increase. The bond strength of zirconia-resin cement can be effectively increased with the treatment of primer composed of the adhesive monomer that can chemically bond with the oxide layer, which forms on the surface of zirconia. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) that contains phosphate ester and acidic monomer 4-methacryloxyethyl trimellitic anhydride(4-META) have been suggested as monomers that can form chemical bond with the surface oxide layer of zirconia. Also, these suggested monomers have proved to be effective zirconia surface treatment for bonding to resin cement. The purpose of this study is to evaluate the effects of primer treatment on the bond strength of Zirconia-resin cement by using three different kinds of primers on the market. Methods: Zirconia blocks were prepared into 60 disk-shaped specimens by using a diamond saw. Specimens were divided into four different groups: first three groups were treated with zirconiaLiner(Sun Medical Co., Ltd., Furutaka-cho, Moriyama, Shiga, Japan), Alloy primer (Kuraray Noritake Dental Inc., Sakaju, Kurashiki, Okayama, Japan), and Universal primer (Tokuyama dental Corp., Taitou, Taitou-ku, Tokyo, Japan) respectively. The last group was the control with no surface treatment. Dual cured resin cement (Biscem, Bisco Inc., Schaumburg, IL, USA) was luted to each group of specimens. And then, shear bond strengths were measured by universal tesing machine. The significance of the result was statistically analyzed by one-way ANOVA and Tukey test. The failure sites in each group were inspected under a magnifier. Results: Mean shear bond strength were 0.60, 1.39, 1.03, 1.38 MPa for control, Zirconia Liner (ZL), Alloy primer (AP), Universal primer (UP), respectively. Groups with application of each of the three primers showed significantly higher shear bond strength compared to the control group (p < 0.05). Among the three groups with the treatment, ZL and UP showed significantly higher shear bond strength than AP (p < 0.05), and there were no significant differences in mean shear bond strength between ZL and UP (p < 0.05). While the most specimens of control groups showed adhesive failure (80%), the most specimens of three primer-treated groups showed cohesive or mixed failure (80%).Keywords: primer, resin cement, shear bond strength, zirconia
Procedia PDF Downloads 202826 Kinematic Analysis of Human Gait for Typical Postures of Walking, Running and Cart Pulling
Authors: Nupur Karmaker, Hasin Aupama Azhari, Abdul Al Mortuza, Abhijit Chanda, Golam Abu Zakaria
Abstract:
Purpose: The purpose of gait analysis is to determine the biomechanics of the joint, phases of gait cycle, graphical and analytical analysis of degree of rotation, analysis of the electrical activity of muscles and force exerted on the hip joint at different locomotion during walking, running and cart pulling. Methods and Materials: Visual gait analysis and electromyography method has been used to detect the degree of rotation of joints and electrical activity of muscles. In cinematography method an object is observed from different sides and takes its video. Cart pulling length has been divided into frames with respect to time by using video splitter software. Phases of gait cycle, degree of rotation of joints, EMG profile and force analysis during walking and running has been taken from different papers. Gait cycle and degree of rotation of joints during cart pulling has been prepared by using video camera, stop watch, video splitter software and Microsoft Excel. Results and Discussion: During the cart pulling the force exerted on hip is the resultant of various forces. The force on hip is the vector sum of the force Fg= mg, due the body of weight of the person and Fa= ma, due to the velocity. Maximum stance phase shows during cart pulling and minimum shows during running. During cart pulling shows maximum degree of rotation of hip joint, knee: running, and ankle: cart pulling. During walking, it has been observed minimum degree of rotation of hip, ankle: during running. During cart pulling, dynamic force depends on the walking velocity, body weight and load weight. Conclusions: 80% people suffer gait related disease with increasing their age. Proper care should take during cart pulling. It will be better to establish the gait laboratory to determine the gait related diseases. If the way of cart pulling is changed i.e the design of cart pulling machine, load bearing system is changed then it would possible to reduce the risk of limb loss, flat foot syndrome and varicose vein in lower limb.Keywords: kinematic, gait, gait lab, phase, force analysis
Procedia PDF Downloads 576825 Methadone Maintenance Treatment Patients' and Medical Students' Common Trait: Low Mindfulness Trait Associated with High Perceived Stress
Authors: Einat Peles, Anat Sason, Ariel Claman, Gabriel Barkay, Miriam Adelson
Abstract:
Individuals with opioid addiction are characterized as suffering from stress responses disturbance, including the hypothalamic-pituitary-adrenal (HPA) axis, and autonomic nervous system function. HPA axis is known to be stabilized during methadone maintenance treatment (MMT). Mindfulness (present-oriented, nonjudgmental awareness of cognitions, emotions, perceptions, and habitual behavioral reactions in daily life) counteracts stress. To our knowledge, the relation between perceived stress and mindfulness trait among MMT patients has never been studied. To measure indices of mindfulness and their relation to perceived stress among MMT patients, a cross-sectional random sample of current MMT patients was performed using questionnaires for perceived stress (PSS) and mindfulness trait (FFMQ- yields a total score and individual scores for five internally consistent mindfulness factors: Observing, Describing, Acting with awareness and consciousness, Non-judging the inner experience, Non-reactivity to the inner experience). Two additional groups were studied to serve as reference groups; Medical students that are known to suffer from stress, and Axis II psychiatric diagnosis patients that are known to characterized with poor mindfulness trait. Results: Groups included 41 MMT patients, 27 Axis II patients and 36 medical students. High perceived stressed (PSS≥18) defined among 61% of the MMT patients and 50% of the medical students. Highest mindfulness score observed among non-stressed MMT patients (153.5±17.2) followed by the groups of stressed MMT and non-stressed student (128.9±17.0 and 130.5±13.3 respectively), with the lowest score among stressed students (116.3±17.9) (multivariate analyses, corrected model p (F=14.3) < 0.0005, p (group) < 0.0005, p (stress) < 0.0005, p (interaction) =0.2). Linear inverse correlations were found between perceived stress score and mindfulness score among MMT patients (R=-0.65, p < 0.0005) and students (R=-0.51, p=0.002). Axis II patients had the lowest mindfulness score (103.4±25.3). Conclusion: High prevalence of high perceived stressed which characterized with poor mindfulness trait observed in both MMT patients and medical students, two different population groups. The effectiveness of mindfulness treatment in reducing stress and improve mindfulness trait should be evaluated to improve rehabilitation of MMT patients, and students success.Keywords: mindfulness, stress, methadone maintenance treatment, medical students
Procedia PDF Downloads 183824 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan
Authors: Fawad Ali
Abstract:
Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer
Procedia PDF Downloads 70