Search results for: working models
9160 Supply Chain Design: Criteria Considered in Decision Making Process
Authors: Lenka Krsnakova, Petr Jirsak
Abstract:
Prior research on facility location in supply chain is mostly focused on improvement of mathematical models. It is due to the fact that supply chain design has been for the long time the area of operational research that underscores mainly quantitative criteria. Qualitative criteria are still highly neglected within the supply chain design research. Facility location in the supply chain has become multi-criteria decision-making problem rather than single criteria decision due to changes of market conditions. Thus, both qualitative and quantitative criteria have to be included in the decision making process. The aim of this study is to emphasize the importance of qualitative criteria as key parameters of relevant mathematical models. We examine which criteria are taken into consideration when Czech companies decide about their facility location. A literature review on criteria being used in facility location decision making process creates a theoretical background for the study. The data collection was conducted through questionnaire survey. Questionnaire was sent to manufacturing and business companies of all sizes (small, medium and large enterprises) with the representation in the Czech Republic within following sectors: automotive, toys, clothing industry, electronics and pharmaceutical industry. Comparison of which criteria prevail in the current research and which are considered important by companies in the Czech Republic is made. Despite the number of articles focused on supply chain design, only minority of them consider qualitative criteria and rarely process supply chain design as a multi-criteria decision making problem. Preliminary results of the questionnaire survey outlines that companies in the Czech Republic see the qualitative criteria and their impact on facility location decision as crucial. Qualitative criteria as company strategy, quality of working environment or future development expectations are confirmed to be considered by Czech companies. This study confirms that the qualitative criteria can significantly influence whether a particular location could or could not be right place for a logistic facility. The research has two major limitations: researchers who focus on improving of mathematical models mostly do not mention criteria that enter the model. Czech supply chain managers selected important criteria from the group of 18 available criteria and assign them importance weights. It does not necessarily mean that these criteria were taken into consideration when the last facility location was chosen, but how they perceive that today. Since the study confirmed the necessity of future research on how qualitative criteria influence decision making process about facility location, the authors have already started in-depth interviews with participating companies to reveal how the inclusion of qualitative criteria into decision making process about facility location influence the company´s performance.Keywords: criteria influencing facility location, Czech Republic, facility location decision-making, qualitative criteria
Procedia PDF Downloads 3269159 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy
Procedia PDF Downloads 3779158 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine
Authors: Joseph Soliman, Youssef Attia, Khairy Megalla
Abstract:
The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.Keywords: stirling engine, solar energy, new energy, dynamic motion
Procedia PDF Downloads 4239157 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction
Authors: Kudzanayi Chiteka, Wellington Makondo
Abstract:
The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models
Procedia PDF Downloads 2749156 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 779155 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents
Authors: M. Ouassaf, S. Belaid
Abstract:
A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR
Procedia PDF Downloads 1569154 Performance Evaluation of Adsorption Refrigerating Systems
Authors: Nadia Allouache, Omar Rahli
Abstract:
Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.
Procedia PDF Downloads 799153 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization
Authors: Xiongxiong You, Zhanwen Niu
Abstract:
Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms
Procedia PDF Downloads 1419152 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling
Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun
Abstract:
Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model
Procedia PDF Downloads 2759151 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2009150 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.Keywords: climate change, projections, solar radiation, validation
Procedia PDF Downloads 2069149 The Impact of Non-Interest Banking on Economic Development in Nigeria
Authors: Oduntan Kemi Olalekan
Abstract:
Nigeria as the largest economy in Africa is still in its developing stage as its economy cannot be termed developed; it is still in search of economic policy that will positively affect the life of majority of her citizenry. Several policies have been employed to take care of the situation prominent among which is Structural Adjustment Programme (SAP) of Babangida Administration but it could not rescue the economy. Non-interest Banking otherwise known as Islamic Banking has been suggested as a means of developing Nigerian economy as it will enable more Nigerian have access to working capital and contribute positively to the growth of her economy. The paper investigated the level of Nigeria economic development and gave an overview of economic policies since independence, traced the genesis of non-interest banking in Nigeria and made recommendations on the adoption of the policy as an antidote to Nigeria economic development.Keywords: economic development, Nigerian economy, non-interest banking, working capital, Islamic banking.
Procedia PDF Downloads 3949148 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1429147 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 809146 Effect of Prandtl Number on Flow and Heat Transfer Across a Confined Equilateral Triangular Cylinder
Authors: Tanveer Rasool, A. K. Dhiman
Abstract:
The paper reports 2-D numerical study used to investigate the effect of changing working fluids with Prandtl numbers 0.71, 10 and 50 on the flow and convective heat transfer across an equilateral triangular cylinder placed in a horizontal channel with its apex facing the flow. Numerical results have been generated for fixed blockage ratio of 50% and for three Reynolds numbers of 50, 75, and 100 for each Prandtl numbers respectively. The studies show that for above range of Reynolds numbers, the overall drag coefficient is insensitive to the Prandtl number changes while as the heat transfer characteristics change drastically with changing Prandtl number of the working fluid. The results generated are in complete agreement with the previous literature available.Keywords: Prandtl number, Reynolds number, drag coefficient, flow and isothermal patterns
Procedia PDF Downloads 3989145 Repeatable Scalable Business Models: Can Innovation Drive an Entrepreneurs Un-Validated Business Model?
Authors: Paul Ojeaga
Abstract:
Can the level of innovation use drive un-validated business models across regions? To what extent does industrial sector attractiveness drive firm’s success across regions at the time of start-up? This study examines the role of innovation on start-up success in six regions of the world (namely Sub Saharan Africa, the Middle East and North Africa, Latin America, South East Asia Pacific, the European Union and the United States representing North America) using macroeconomic variables. While there have been studies using firm level data, results from such studies are not suitable for national policy decisions. The need to drive a regional innovation policy also begs for an answer, therefore providing room for this study. Results using dynamic panel estimation show that innovation counts in the early infancy stage of new business life cycle. The results are robust even after controlling for time fixed effects and the study present variance-covariance estimation robust standard errors.Keywords: industrial economics, un-validated business models, scalable models, entrepreneurship
Procedia PDF Downloads 2839144 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 499143 Correlates of Modes of Transportation to Work among Working Adults in Ernakulam District, Kerala
Authors: Anjaly Joseph, Elezebeth Mathews
Abstract:
Transportation and urban planning is the least recognised area for physical activity promotion in India, unlike developed regions. Identifying the preferred transportation modalities and factors associated with it is essential to address these lacunae. The objective of the study was to assess the prevalence of modes of transportation to work, and its correlates among working adults in Ernakulam District, Kerala. A cross sectional study was conducted among 350 working individuals in the age group of 18-60 years, selected through multi-staged stratified random sampling in Ernakulam district of Kerala. The inclusion criteria were working individuals 18-60 years, workplace at a distance of more than 1 km from the home and who worked five or more days a week. Pregnant women/women on maternity leave and drivers (taxi drivers, autorickshaw drivers, and lorry drivers) were excluded. An interview schedule was used to capture the modes of transportation namely, public, private and active transportation, socio demographic details, travel behaviour, anthropometric measurements and health status. Nearly two-thirds (64 percent) of them used private transportation to work, while active commuters were only 6.6 percent. The correlates identified for active commuting compared to other modes were low socio-economic status (OR=0.22, CI=0.5-0.85) and presence of a driving license (OR=4.95, CI= 1.59-15.45). The correlates identified for public transportation compared to private transportation were female gender (OR= 17.79, CI= 6.26-50.31), low income (OR=0.33, CI= 0.11-0.93), being unmarried (OR=5.19, CI=1.46-8.37), presence of no or only one private vehicle in the house (OR=4.23, CI=1.24-20.54) and presence of convenient public transportation facility to workplace (OR=3.97, CI= 1.66-9.47). The association between body mass index (BMI) and public transportation were explored and found that public transport users had lesser BMI than private commuters (OR=2.30, CI=1.23-4.29). Policies that encourage active and public transportation needs to be introduced such as discouraging private vehicle through taxes, introduction of convenient and safe public transportation facility, walking/cycling paths, and paid parking facility.Keywords: active transportation, correlates, India, public transportation, transportation modes
Procedia PDF Downloads 1649142 Literature Review and Approach for the Use of Digital Factory Models in an Augmented Reality Application for Decision Making in Restructuring Processes
Authors: Rene Hellmuth, Jorg Frohnmayer
Abstract:
The requirements of the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Even today, the methods and process models used in factory planning are predominantly based on the classical planning principles of Schmigalla, Aggteleky and Kettner, which, however, are not specifically designed for reorganization. In addition, they are designed for a largely static environmental situation and a manageable planning complexity as well as for medium to long-term planning cycles with a low variability of the factory. Existing approaches already regard factory planning as a continuous process that makes it possible to react quickly to adaptation requirements. However, digital factory models are not yet used as a source of information for building data. Approaches which consider building information modeling (BIM) or digital factory models in general either do not refer to factory conversions or do not yet go beyond a concept. This deficit can be further substantiated. A method for factory conversion planning using a current digital building model is lacking. A corresponding approach must take into account both the existing approaches to factory planning and the use of digital factory models in practice. A literature review will be conducted first. In it, approaches to classic factory planning and approaches to conversion planning are examined. In addition, it will be investigated which approaches already contain digital factory models. In the second step, an approach is presented how digital factory models based on building information modeling can be used as a basis for augmented reality tablet applications. This application is suitable for construction sites and provides information on the costs and time required for conversion variants. Thus a fast decision making is supported. In summary, the paper provides an overview of existing factory planning approaches and critically examines the use of digital tools. Based on this preliminary work, an approach is presented, which suggests the sensible use of digital factory models for decision support in the case of conversion variants of the factory building. The augmented reality application is designed to summarize the most important information for decision-makers during a reconstruction process.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1389141 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 679140 UniFi: Universal Filter Model for Image Enhancement
Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh
Abstract:
Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.Keywords: universal filter, image enhancement, neural networks, computer vision
Procedia PDF Downloads 1019139 Characteristics of Inclusive Circular Business Models in Social Entrepreneurship
Authors: Svitlana Yermak, Olubukola Aluko
Abstract:
The purpose of this study was a literature review on the topic of social entrepreneurship, a review of new trends and best practices, the study of existing inclusive business models and their interaction with the principles of the circular economy for possible implementation in the practice of Ukraine in war and post-war times in conditions of scarce resources. Thus, three research questions were identified and substantiated: to determine the characteristics of social entrepreneurship, consider the features in Ukraine and the UK; highlight the criteria for inclusion in social entrepreneurship and its legal support; explore examples of existing inclusive circular business models to illustrate how the two concepts may be combined. A detailed review of the literature selected from the Scopus and Web of Science databases was carried out. The study revealed signs of social entrepreneurship, the main of which are doing business and making a profit, as well as the social orientation of the business, which is prescribed in the constituent documents of the enterprise immediately upon its creation. Considered are the characteristics of social entrepreneurship in the UK and Ukraine. It has been established that in the UK, social entrepreneurship is clearly regulated by the state; there are special legislative norms and support programs, in contrast to Ukraine, where these processes are only partially regulated. The study identified the main criteria for inclusion in inclusive circular business models: economic (sustainability and efficiency, job creation and economic growth, promotion of local development), social (accessibility, equity and fairness, inclusion and participation), and resources in their interconnection. It is substantiated that the resource criterion is especially important for this type of business model. It provides for the efficient and sustainable use of resources, as well as the cyclical nature of resources. And it was concluded that the principles of the circular economy not only do not contradict but, on the contrary, complement and expand the inclusive business models on which social entrepreneurship is based.Keywords: social entrepreneurship, inclusive business models, circular economy, inclusion criteria
Procedia PDF Downloads 1019138 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2159137 Optimizing The Residential Design Process Using Automated Technologies
Authors: Martin Georgiev, Milena Nanova, Damyan Damov
Abstract:
Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization
Procedia PDF Downloads 529136 Ceramic Employees’ Occupational Health and Safety Training Expectations in Turkey
Authors: Erol Karaca
Abstract:
This study aims to analyze ceramic employees’ occupational health and safety training expectations. To that general objective, the study tries to examine whether occupational health and safety training expectations of ceramic employees meaningfully differentiate depending on demographic features and professional, social and economic conditions. For this purpose, the research data was collected through “Questionnaire of Occupational Health and Safety Training Expectation” (QSOHSTE) consisting of 25 open and close-ended questions developed by the researcher on the base of the literature review. QSOHSTE was applied to 125 ceramic employees working in Kutahya, Turkey. Data obtained from questionnaires were analyzed via SPSS 21. The findings, obtained from the study, revealed that employees’ agreement level to occupational health and safety training expectation statements is generally high-level. These findings also reveals that employees have various expectations about occupational health and safety training. These expectations are increasing sensitivity towards occupational health and safety training about the prevention of occupational accidents and diseases, contributing occupational health and safety training in establishing healthy and safe working environment, requiring occupational health and safety training before starting work, in case of changing working equipment and new technological applications, necessity of measurement and evaluation after occupational health and safety training. Besides these findings, employees’ agreement level to occupational health and safety training expectation statements also varies in terms of educational level, professional seniority, income level and perception of economic condition.Keywords: occupational health and safety, occupational training, occupational expectation, professional seniority
Procedia PDF Downloads 4479135 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin
Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford
Abstract:
Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling
Procedia PDF Downloads 1549134 Mission Driven Enterprises in Ecosystems as Drivers for Sustainable System Change
Authors: Monique de Ritter, Annemieke Roobeek
Abstract:
This study takes a holistic multi-layered systems approach on entrepreneurship, innovation, and sustainability. Concretely we looked how mission driven entrepreneurs (level 1) employ new business models and launch innovative products and/or ideas in their enterprises, which are (level 2) operating in entrepreneurial ecosystems (level 3), and how these in turn may generate higher level sustainable change (level 4). We employed a qualitative grounded research approach in which our aim is to contribute to theory. Fourteen in-depth semi-structured interviews were conducted with mission driven entrepreneurs in the Netherlands in which their individual drives, business models, and ecosystems were discussed. Interview transcripts were systematically coded and analysed and the ecosystems were visually mapped. Most important patterns include 1) entrepreneurs have a clear sustainable mission and regard this mission as de raison d’être of their enterprise; 2) entrepreneurs employ new business models with a focus on collaboration for innovation; the business model supports or enhances the sustainable mission of the enterprise, 3) entrepreneurs collaborate in ecosystems in which a) they also regard suppliers as partners for innovation and clients as ambassadors for the sustainable mission, b) would like to improve their relationships with financial institutions as they are in the entrepreneurs’ perspective often lagging behind with their innovative ideas and models, c) they collaborate for knowledge and innovation with several parties, d) personal informal connections are very important, and e) in which the higher sustainable mission is not a point of competition but of collaboration.Keywords: sustainability, entrepreneurship, innovation, ecosystem, business models
Procedia PDF Downloads 3759133 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media
Authors: Golden J. Zhang, Dongbao Zhou
Abstract:
Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics
Procedia PDF Downloads 1269132 Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area
Authors: Melissa Hachem, Lynda Bensefa-Colas, Isabelle Momas
Abstract:
We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants.Keywords: black carbon, COVID-19, France, lockdown, taxis, ultrafine particles
Procedia PDF Downloads 1929131 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics
Authors: Janne Engblom, Elias Oikarinen
Abstract:
A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.Keywords: dynamic model, fixed effects, panel data, price dynamics
Procedia PDF Downloads 1508