Search results for: vortex induced vibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3648

Search results for: vortex induced vibration

3078 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: actuator, nozzle, microejector, piezoelectric

Procedia PDF Downloads 432
3077 Treatment of Drug-Induced Oral Ulceration with Hyaluronic Acid Gel: A Case Report

Authors: Meltem Koray, Arda Ozgon, Duygu Ofluoglu, Mehmet Yaltirik

Abstract:

Oral ulcerations can be seen as a side effect of different drugs. These ulcers usually appear within a few weeks following drug treatment. In most of cases, these ulcers resist to conventional treatments, such as anesthetics, antiseptics, anti-inflammatory agents, cauterization, topical tetracycline and corticosteroid treatment. The diagnosis is usually difficult, especially in patients receiving multiple drug therapies. Hyaluronan or hyaluronic acid (HA) is a biomaterial that has been introduced as an alternative approach to enhance wound healing and also used for oral ulcer treatment. The aim of this report is to present the treatment of drug-induced oral ulceration on maxillary mucosa with HA gel. 60-year-old male patient was referred to Department of Oral and Maxillofacial Surgery complaining of oral ulcerations during few weeks. He had received chemotherapy and radiotherapy in 2014 with the diagnosis of nasopharyngeal carcinoma, and he has accompanying systemic diseases such as; cardiological, neurological diseases and gout. He is medicated with Escitalopram (Cipralex® 20mg), Quetiapine (Seroquel® 100mg), Mirtazapine (Zestat® 15mg), Acetylsalicylic acid (Coraspin® 100mg), Ramipril-hydrochlorothiazide (Delix® 2.5mg), Theophylline anhydrous (Teokap Sr® 200mg), Colchicine (Colchicum Dispert® 0.5mg), Spironolactone (Aldactone® 100mg), Levothyroxine sodium (Levotiron® 50mg). He had painful oral ulceration on the right side of maxillary mucosa. The diagnosis was 'drug-induced oral ulceration' and HA oral gel (Aftamed® Oral gel) was prescribed 3 times a day for 2 weeks. Complete healing was achieved within 3 weeks without any side effect and discomfort. We suggest that HA oral gel is a potentially useful local drug which can be an alternative for management of drug-induced oral ulcerations.

Keywords: drug-induced, hyaluronic acid, oral ulceration, maxillary mucosa

Procedia PDF Downloads 273
3076 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 460
3075 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process

Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani

Abstract:

Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.

Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process

Procedia PDF Downloads 344
3074 Acute Effects of Local Vibration on Muscle Activation, Metabolic and Hormone Responses

Authors: Zong Yan Cai, Wen-Chyuan Chen, Chih-Min Wu

Abstract:

The purpose of this study was to investigate the acute effects of local vibration on muscle activation, metabolic and hormone responses. Totally 12 healthy, physically inactive, male adults participated in this study and completed LV exercise session. During LV exercise session, four custom-made vibrations (diameter: 20 mm; thickness: 8 mm; weight: 0.022 g) were locally placed over the belly of the thigh of each subject’s non-dominant leg in supine lying position, and subjects received 10 sets for 1 min at the frequency of 35-40Hz, with 1–2 min of rest between sets. The surface electromyography (EMG) were obtained from the vastus medialis and rectus femoris, and the subjects’ rating of perceived exertion (RPE) and heart rate (HR) were measured. EMG data, RPE values as well as HR were obtained by averaging the results of 10 sets of each exercise session. Blood samples were drawn before exercise, immediately after exercise, and 15min and 30min after exercise in each session for analysis of lactic acid (LA), growth hormone (GH), testosterone (T) and cortisol (C). The results indicated that the HR did not increase after LV (63.18±3.5 to 63.25±2.58 beat/min, p > 0.05). The average RPE values during the LV exposure were at 2.86±0.39. The root mean square % EMG values from the vastus medialis and rectus femoris were 19.02±2.19 and 8.25±2.20 respectively. There were no significant differences after acute LV exercise among LA, GH and T values as compared with baseline values (LA: 0.68±0.11 to 0.7±0.1 mmol/L; GH: 0.06±0.05 to 0.57±0.27 ng/mL; T: 551.33±46.62 to 520.42±43.78 ng/dL, p>0.05). However, the LV treatment caused a significant decrease in C values after exercise (16.56±1.05 to 11.64±1.85 nmol/L, p<0.05). In conclusion, acute LV exercise only slightly increase muscle activation which may not cause effective exercise response. However, acute LV exercise reduces C level, which may reduce the catabolic response. The probable reason might partly due to the vibration rhythmically which massage on muscles.

Keywords: cortisol, growth hormone, lactic acid, testosterone

Procedia PDF Downloads 271
3073 Neuro-Preservation Potential of Resveratrol Against High Fat High Fructose-Induced Metabolic Syndrome

Authors: Rania F. Ahmed, Sally A. El Awdan, Gehad A. Abdel Jaleel, Dalia O. Saleh, Omar A. H. Ahmed-Farid

Abstract:

The metabolic syndrome is an important public health concern often related to obesity, improper diet, and sedentary lifestyles and can predispose individuals to the development of many dangerous health conditions, disability and early death. This research aimed to investigate the efficacy of resveratrol (RSV) to reverse the neuro-complications associated with metabolic syndrome experimentally-induced in rats using an eight weeks high fat, high fructose diet (HFHF) model. The corresponding drug treatments were administered orally during the last 10 days of the diet. Behavioural tests namely the open field test (OFT) and the forced swimming test (FST) were conducted. Brain levels of monoamines viz. serotonin, norepinephrine and dopamine as well as their metabolites were assessed. 8-hydroxyguanosine (8-OHDG) as an indicative of DNA-fragmentation, nitric oxide (NOx) and tumor necrosis factor-α (TNF- α) were estimated. Finally, brain antioxidant parameters namely malondialdehyde (MDA), reduced and oxidized glutathione (GSH, GSSG) were evaluated. HFHF-induced metabolic syndrome resulted in decreased activity in the OFT and increased immobility duration in the FST. Furthermore, HFHF-induced metabolic syndrome lead to a significant increase in brain monoamines turn over as well as elevation in 8-OHDG, NOx, TNF- α, MDA and GSSG; and reduction in GSH. Ten days daily treatment with RSV (20 and 40 mg/kg p.o) dose dependently increased activity in the OFT and decreased immobility duration in the FST. Moreover, RSV normalized brain monoamines contents, reduced 8-OHDG, NOx, TNF- α, MDA and GSSG; and elevated GSH. In conclusion, we can say that RSV showed neuro-protective properties against HFHF-induced metabolic syndrome represented by monoamines preservation, prevention of neurodegeneration, anti-inflammatory and antioxidant potentials and could be recommended as a beneficial daily dietary supplement to treat the neuronal side effects associated with HFHF-induced metabolic syndrome.

Keywords: antioxidants, DNA-fragmentation, forced swimming test, HFHF-induced metabolic syndrome, monoamines, nitric oxide (NOx), open field, resveratrol, tumor necrosis factor-α (TNF- α), 8-hydroxyguanosine (8-OHDG)

Procedia PDF Downloads 278
3072 Protective Effect of Malva sylvestris L. against Sodium Fluoride-Induced Nephrotoxicity in Rat

Authors: Ali Babaei Zarch, S. Kianbakht, H. Fallah Huseini, P. Changaei, A. Mirjalili, J. Salehi

Abstract:

Background: Malva sylvestris L. is widely used in the traditional medicine of Iran and other countries to treat gastrointestinal, respiratory, skin and urological Disorders. Moreover, it has antioxidant property. Objective: In this study the protective effect of Malva sylvestris against sodium fluoride-induced nephrotoxicity in rats were evaluated. Methods: The Malva sylvestris flower extract was injected intraperitoneally at the doses of 100, 200, 400 mg/kg/day to groups of rats ( 10 in each group) for 1 week and subsequently 600 ppm sodium fluoride was added daily to the rats drinking water for 1 additional week. After these steps, the rats’ serum levels of urea, creatinine, reduced glutathione, catalase and malondialdehyde were determined. The histopathology of the rats’ kidney was also studied. Results: Malva sylvesteries extract with doses of 400 mg/kg/day significantly decreased the urea and creatinine levels (P<0.05). Moreover, the levels of catalase and glutathione were increased by this dose, but only the catalase increase was statistically significant (P<0.05). All three extract doses of Malva decreased the malondialdehyde level, but it was significant only for the dose 400 mg/kg/day (P<0.05). Histopathological findings also showed a protective effect of Malva against renal damage induced by sodium fluoride. Conclusion: The results suggest that Malva sylvestris has a protective effect against sodium fluoride-induced nephrotoxicity through its antioxidant property.

Keywords: Malva sylvestris, mephrotoxicity, sodium fluoride, rat  

Procedia PDF Downloads 341
3071 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 131
3070 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.

Keywords: passive control system, damping devices, viscous dampers, control algorithm

Procedia PDF Downloads 475
3069 Effect of Amlodipine on Dichlorvos-Induced Seizure in Mice

Authors: Omid Ghollipoor Bashiri, Farzam Hatefi

Abstract:

Dichlorvos a synthetic organophosphate poisons are used as insecticide. These toxins can be used insecticides in agriculture and medicine for destruction and/or eradication of ectoparasites of animals. Studies have shown that Dichlorvos creation seizure effects in different animals. Amlodipine, dihydropyridine calcium channel blockers, widely used for treatment of cardiovascular diseases. Studies have shown that the calcium channel blockers are anticonvulsant effects in different animal models. The aim of this study was to determine the effect of Amlodipine on Dichlorvos-induced seizures in mice. In this experiment, the animals were received different doses of Amlodipine (2.5, 5, 10, 20 and 40 mg/ kg b.wt.) intraperitoneally 30 min before intraperitoneal injection of Dichlorvos (50 mg/kg b.wt). After Dichlorvos injection, clonic and tonic seizures, and finally was the fate was investigated. Results showed that Amlodipine dose-dependently reduced the severity of Dichlorvos-induced seizures, so that Amlodipine at a dose of 5mg (The lowest, p<0.05) and 40 mg/kg b.wt. (The highest, p<0.001) which had anticonvulsant effects. The anticonvulsant activity of Amlodipine suggests that possibly due to the antagonistic effect on voltage-dependent calcium channel.

Keywords: dichlorvos, amlodipine, seizures, mice

Procedia PDF Downloads 309
3068 Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle

Authors: Wenxin Mei, Jinhua Sun, Qingsong Wang

Abstract:

The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material.

Keywords: electrochemical-mechanical model, graphite particle, lithium concentration, lithium ion battery, stress

Procedia PDF Downloads 203
3067 In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice

Authors: K. Yadamma, K. Rudrama Devi

Abstract:

The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells.

Keywords: ginger extract, protection, bone marrow cells, swiss albino mice

Procedia PDF Downloads 440
3066 The Effect of Manual Acupuncture-induced Injury as a Mechanism Contributing to Muscle Regeneration

Authors: Kamal Ameis

Abstract:

This study aims to further improve our understanding of the underlying mechanism of local injury that occurs after manual acupuncture needle manipulation, and that initiates the muscle regeneration process, which is essential for muscle maintenance and adaptation. Skeletal muscle is maintained by resident stem cells called muscle satellite cells. These cells are normally in quiescent state, but following muscle injury, they re-enter the cell cycle and execute a myogenic program resulting in muscle fiber regeneration. Our previous work in young rats demonstrated that acupuncture treatment induced injury that activated resident satellite (stem) cells, which leads to muscle regeneration. Skeletal muscle regeneration is an adaptive response to injury that requires a tightly orchestrated event between signaling pathways activated by growth factor and intrinsic regulatory program controlled by myogenic transcription factor. We identified several gene expressions uniquely important for muscle regeneration in response to acupuncture treatment at different time course using different biological techniques, including Immunocytochemistry, western blotting, and Real Time PCR. This study uses a novel but non-invasive model of injury induced by manual acupuncture to further our current understanding of regenerative mechanism of muscle stem cells. From a clinical perspective, this model of injury induced by manual acupuncture may be easily translatable into a clinical tool that can be used as an alternative to physical exercise for patients challenged by bed rest or forced inactivity. Finally, the knowledge gained from this research could be useful for studies of the local effects of various modalities of induced injury, such as the traditional method of healing by cupping (hijamah), which may enhanced muscle stem cells and muscle fiber regeneration.

Keywords: acupuncture, injury, regeneration, muscle stem cells

Procedia PDF Downloads 152
3065 Genetic Variations of CYP2C9 in Thai Patients Taking Medical Cannabis

Authors: Naso Isaiah Thanavisuth

Abstract:

Medical cannabis can be used for treatment including pain, multiple sclerosis, Parkinson's disease, and cancer. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 and CYP2C9*3 on exon 7 to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are apharmacogenetics marker for the prediction of THC-induced AEs in Thai patients. We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. We enrolled 39 Thai patients with medical cannabis treatment who were classified by clinical data. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay. All Thai patients who received the medical cannabis consist of twenty-four (61.54%) patients were female, and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty-nine (7.69%) and one of thirty-nine (2.56%), respectively. Although, our results indicate that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for the prevention of medical cannabis-induced AEs.

Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450

Procedia PDF Downloads 122
3064 Electrical Properties of Polarization-Induced Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride Sapphire Template by Molecular Beam Epitaxy

Authors: Guanlin Wu, Jiajia Yao, Fang Liu, Junshuai Xue, Jincheng Zhang, Yue Hao

Abstract:

Owing to the excellent thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN)/Gallium nitride (GaN) is a highly promising material to achieve high breakdown voltage and output power devices among III-nitrides. In this study, we explore the growth and characterization of polarization-induced AlN/GaN heterostructures using plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and demonstrate the effectiveness of the PA-MBE approach, a thick AlN buffer of 180 nm was first grown on the AlN-on sapphire template. This buffer acts as a back-barrier to enhance the breakdown characteristic and isolate leakage paths that exist in the interface between the AlN epilayer and the AlN template. A root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 was measured by atomic force microscopy (AFM), and the full-width at half-maximum of (002) and (102) planes on the X-ray rocking curve was 101 and 206 arcsec, respectively, using by high-resolution X-ray diffraction (HR-XRD). The electron mobility of 443 cm2/Vs with a carrier concentration of 2.50×1013 cm-2 at room temperature was achieved in the AlN/GaN heterostructures by using a polarization-induced GaN channel. The low depletion capacitance of 15 pF is resolved by the capacitance-voltage. These results indicate that the polarization-induced AlN/GaN heterostructures have great potential for next-generation high-temperature, high-frequency, and high-power electronics.

Keywords: AlN, GaN, MBE, heterostructures

Procedia PDF Downloads 89
3063 Contribution of NLRP3 Inflammasome to the Protective Effect of 5,14-HEDGE, A 20-HETE Mimetic, against LPS-Induced Septic Shock in Rats

Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat, Mahesh P. Paudyal, John R. Falck, Kafait U. Malik

Abstract:

We hypothesized that 20-hydroxyeicosatetraenoic acid (20-HETE) mimetics such as N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE) may be beneficial for preventing mortality due to inflammation induced by lipopolysaccharide (LPS). This study aims to assess the effect of 5,14-HEDGE on the LPS-induced changes in nucleotide binding domain and leucine-rich repeat protein 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)/pro-caspase-1 inflammasome. Rats were injected with saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. 5,14-HEDGE (30 mg/kg) was administered to rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and kidney, heart, thoracic aorta, and superior mesenteric artery were isolated for measurement of caspase-1/11 p20, NLRP3, ASC, and β-actin proteins as well as interleukin-1β (IL-1β) levels. Blood pressure decreased by 33 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. In the LPS-treated rats, tissue protein expression of caspase-1/11 p20, NLRP3, and ASC in addition to IL-1β levels were increased. 5,14-HEDGE prevented the LPS-induced changes. Our findings suggest that inhibition of renal, cardiac, and vascular formation/activity of NLRP3/ASC/pro-caspase-1 inflammasome involved in the protective effect of 5,14-HEDGE on LPS-induced septic shock in rats. This work was financially supported by the Mersin University (2015-AP3-1343) and USPHS NIH (PO1 HL034300).

Keywords: 5, 14-HEDGE, lipopolysaccharide, NLRP3, inflammasome, septic shock

Procedia PDF Downloads 301
3062 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns.

Keywords: encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis

Procedia PDF Downloads 321
3061 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics

Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky

Abstract:

The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.

Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper

Procedia PDF Downloads 252
3060 Cross-Disciplinary Perspectives on Climate-Induced Migration in Brazil: Legislation, Policies and Practice

Authors: Heloisa H. Miura, Luiza M. Pallone

Abstract:

In Brazil, people forced to move due to environmental causes, called 'environmental migrants', have always been neglected by public policies and legislation. Meanwhile, the numbers of climate-induced migration within and to Brazil continues to increase. The operating Immigration Law, implemented in 1980 under the Brazilian military regime, is widely considered to be out of date, once it does not offer legal protection to migrants who do not fit the definition of a refugee and are not allowed to stay regularly in the country. Aiming to reformulate Brazil’s legislation and policies on the matter, a new Migration Bill (PL 2516/2015) is currently being discussed in the Senate and is expected to define a more humanized approach to migration. Although the present draft foresees an expansion of the legal protection to different types of migrants, it still hesitates to include climate-induced displacements in its premises and to establish a migration management strategy. By introducing a human rights-based approach, this paper aims to provide a new multidisciplinary perspective to the protection of environmental migrants in Brazil.

Keywords: environmental migrants, human mobility, climate change, migration policy

Procedia PDF Downloads 406
3059 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

Authors: Seyed Abolhasan Naeini, Ali Namaei

Abstract:

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

Keywords: vertical drain, prefabricated, consolidation, embankment

Procedia PDF Downloads 154
3058 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 297
3057 Modeling of a Pendulum Test Including Skin and Muscles under Compression

Authors: M. J. Kang, Y. N. Jo, H. H. Yoo

Abstract:

Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques.

Keywords: Kelvin-Voight model, pendulum test, skin and muscles under compression, stretch reflex

Procedia PDF Downloads 449
3056 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.

Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software

Procedia PDF Downloads 411
3055 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: Janusz Kwaśniewski, Ireneusz Dominik, Krzysztof Lalik

Abstract:

The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: auto-oscillator, non-destructive testing, rock thickness measurement, geotechnic

Procedia PDF Downloads 379
3054 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 483
3053 Induced-Gravity Inflation in View of the Bicep2 Results

Authors: C. Pallis

Abstract:

Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential.

Keywords: cosmology, supersymmetric models, supergravity, modified gravity

Procedia PDF Downloads 721
3052 Anti-Melanogenic Effect of Fisetin through Activating Connective Tissue Growth Factor in vivo Mice Model

Authors: Ryeong-Hyeon Kim, Ah-Reum Lee, Seong-Soo Roh, Gyo-Nam Kim

Abstract:

Appropriate regulation of melanogenesis is important for the management of skin pigmentation-related disease. Although several beneficial effects of fisetin (3,7,3’,4’-tetrahydroxyflavone) have been reported, the precise role and molecular mechanisms of fisetin in skin health both remain unclear. Here, we induced melanogenesis of HRM2 mice (n=7/group) by UVB irradiation for 20 days. UVB-induced HRM2 mice showed that the significantly increased melanin accumulation, however, fisetin treatment (25mg and 50mg/kg of body weight) dose-dependently and significantly inhibits UVB-induced melanogenesis. In line with this, fisetin treatment effectively down-regulated m RNA and expression levels of tyrosinase, TRP2, and MITF. In addition, our inhibitor assay revealed the down-regulated melanogenic marker genes by fisetin treatment were mediated with connective tissue growth factor (CCN2)/TGF-β signaling pathway. Useful information is provided for development of functional foods using fisetin for skin health.

Keywords: connective tissue growth factor, fisetin, melanogenesis, skin, TGF-beta

Procedia PDF Downloads 236
3051 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 217
3050 Analgesic, Toxicity and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus Leaves in Albinos Rats

Authors: Yahia Massinissa, Henhouda Affaf, Yahia Mouloud

Abstract:

The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by brewer’s yeast induced fever in rats. For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of Hyoscyamus albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of Hyoscyamus albus was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.

Keywords: Hyoscyamus albus, methanolic extract, toxicity, analgesic activity, antipyretic activity, formalin test

Procedia PDF Downloads 344
3049 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method

Authors: K. Meera Saheb, K. Krishna Bhaskar

Abstract:

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.

Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates

Procedia PDF Downloads 228