Search results for: violation data discovery
25232 Pomegranate Attenuated Levodopa-Induced Dyskinesia and Dopaminergic Degeneration in MPTP Mice Models of Parkinson’s Disease
Authors: Mahsa Hadipour Jahromy, Sara Rezaii
Abstract:
Parkinson’s disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Soon after the discovery of levodopa and its beneficial effects in chronic administration, debilitating involuntary movements observed, termed levodopa-induced dyskinesia (LID) with poorly understood pathogenesis. Polyphenol-rich compounds, like pomegranate, provided neuroprotection in several animal models of brain diseases. In the present work, we investigated whether pomegranate has preventive effects following 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degenerations and the potential to diminish LID in mice. Mice model of PD was induced by MPTP (30 mg/kg daily for five consecutive days). To induce a mice model of LID, valid PD mice were treated with levodopa (50 mg/kg, i.p) for 15 days. Then the effects of chronic co-administration of pomegranate juice (20 ml/kg) with levodopa and continuing for 10 days, evaluated. Behavioural tests were performed in all groups, every other day including: Abnormal involuntary movements (AIMS), forelimb adjusting steps, cylinder, and catatonia tests. Finally, brain tissue sections were prepared to study substantia nigra changes and dopamine neuron density after treatments. With this MPTP regimen, significant movement disorders revealed in AIMS tests and there was a reduction in dopamine striatal density. Levodopa attenuates their loss caused by MPTP, however, in chronic administration, dyskinesia observed in forelimb adjusting step and cylinder tests. Besides, catatonia observed in some cases. Chronic pomegranate co-administration significantly improved LID in both tests and reduced dopaminergic loss in substantia nigra. These data indicate that pomegranate might be a good adjunct for preserving dopaminergic neurons in the substantia nigra and reducing LID in mice.Keywords: levodopa-induced dyskinesia, MPTP, Parkinson’s disease, pomegranate
Procedia PDF Downloads 49425231 2D Fingerprint Performance for PubChem Chemical Database
Authors: Fatimah Zawani Abdullah, Shereena Mohd Arif, Nurul Malim
Abstract:
The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset.Keywords: 2D fingerprints, Tanimoto, PubChem, similarity searching, chemoinformatics
Procedia PDF Downloads 29425230 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13725229 As a Secure Bridge Country about Oil and Gas Sources Transfer after Arab Spring: Turkey
Authors: Fatih Ercin Guney, Hami Karagol
Abstract:
Day by day, humanity's energy needs increase, to facilitate access to energy sources by energy importing countries is of great importance in terms of issues both in terms of economic security and political security. The geographical location of the oil exporting countries in the Middle East (Iran, Iraq, Kuwait, Libya, Saudi Arabia, United Arab Emirates, Qatar) today, it is observed that evaluated by emerging Arab Spring(from Tunisia to Egypt) and freedom battles(in Syria) with security issues arise sourced from terrorist activities(ISIS). Progresses related with limited natural resources, energy and it's transportation issues which worries the developing countries, the energy in the region is considered to how to transfer safely. North Region of the Black Sea , the beginning of the conflict in the regional nature formed between Russia and Ukraine (2010), followed by the relevant regions of the power transmission line (From Russia to Europe) the discovery is considered to be the east's hand began to strengthen in terms of both the economical and political sides. With the growing need for safe access to the west of the new energy transmission lines are followed by Turkey, re-interest is considered to be shifted to the Mediterranean and the Middle East by West. Also, Russia, Iran and China (three axis of east) are generally performing as carry out parallel policies about energy , economical side and security in both United Nations Security Council (Two of Five Permanent Members are Russia and China) and Shanghai Cooperation Organization. In addition, Eastern Mediterranean Region Tension are rapidly increasing about research new oil and natural gas sources by Israel, Egypt, Cyprus, Lebanon. This paper provides, new energy corridor(s) are needed to transfer sources (Oil&Natural Gas) by Europe from East to West. So The West needs either safe bridge country to transfer natural sources to Europe in region or is needed to discovery new natural sources in extraterritorial waters of Eastern Mediterranean Region. But in two opportunities are evaluated with secure transfer corridors form region to Europe in safely. Even if the natural sources can be discovered, they are considered to transfer in safe manner. This paper involved, Turkey’s importance as a leader country in region over both of political and safe energy transfer sides as bridge country between south and north of Turkey why natural sources shall be transferred over Turkey, Even if diplomatic issues-For Example; Cyprus membership in European Union, Turkey membership candidate duration, Israel-Cyprus- Egypt-Lebanon researches about new natural sources in Mediterranean - occurred. But politic balance in Middle-East is changing quickly because of lack of democratic governments in region. So it is evaluated that the alliance of natural sources researches may not be long-time relations due to share sources after discoveries. After evaluating over causes and reasons, aim to reach finding foresight about future of region for energy transfer periods in secure manner.Keywords: Middle East, natural gas, oil, Turkey
Procedia PDF Downloads 29725228 Treaties-Fulfilled or Breached: A Study for Peacefulness of Religions
Authors: Syed A. Alam, Arifa Bilal
Abstract:
A propagated wave of barbaric and injustice Muslims has been popularized by the International powers in the recent past to divert the winning force of Muslims in the Afghan war against Russia. It is a tactic to demolish the power of Jihaad and the religious image of Islam. The propaganda picturized that Muslims were not peaceful or trustworthy people by displaying some brutal actions of a little number of funded people. The word ‘Islam’ is titled as ‘complete codes of life’ because of the peacefulness and trustworthiness of these codes for whole lives. These codes help the whole of humanity beyond the boundaries of any religion, sect, creed, color, geography, or race to lead their lives peacefully and trustfully. The human beings who act upon these codes of life, Islam, can be called Muslims. Those people are not Muslims who do not act upon these codes of life. History is evident that the Muslims proved themselves, collectively, that they are acting upon these codes of life. In this article, an analytical study was conducted regarding popular treaties signed between Muslims and non-Muslim communities in different times and regions on different matters. The study included the treaties of Hudabiyah Treaty, Mithaq-e-Madinah, Lucknow Pact, Indus Water Pact, Air Space Violation Treaty, Gallipoli Treaty, Amity Treaty, US-Russia Peace Treaty, and Wadi Arab Peace Treaty. After critical analysis of these treaties, it can be clearly concluded that Muslims fulfilled these treatises, but non-Muslim stakeholders of these treaties broke these treaties in one aspect or many and in the start or later. It can be concluded that the history of treaties between Muslim and non-Muslim communities declared that Muslims had fulfilled these treaties and pacts, so they are more trustworthy and peaceful people.Keywords: fulfilled treaties, Muslim and non-muslim pacts, Islam and peacefulness, Islam and treaties
Procedia PDF Downloads 13125227 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43725226 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9425225 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 16125224 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 59525223 Increasing the Speed of the Apriori Algorithm by Dimension Reduction
Authors: A. Abyar, R. Khavarzadeh
Abstract:
The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis
Procedia PDF Downloads 325222 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35625221 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 19125220 A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions
Authors: Zhanzhao Fu, Chongyi Ling, Jinlan Wang
Abstract:
Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts.Keywords: DFT, SACs, OER, ORR, HER
Procedia PDF Downloads 7825219 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24825218 The Effect of Human Rights Violation in Modern Society
Authors: Hanania Nasan Shokry Abdelmasih
Abstract:
The discipline of regulation is pretty complex and has its own terminology. other than written legal guidelines, there's also dwelling regulation, which refers to prison exercise. primary legal rules purpose at the happiness of individuals in social existence and feature different characteristics in unique branches including public or non-public regulation. on the other hand, law is a countrywide phenomenon. The law of 1 state and the legal device implemented at the territory of another state can be completely exceptional. individuals who are professionals in a specific discipline of regulation in a single united states may have inadequate know-how within the regulation of every other united states. today, similarly to the neighborhood nature of regulation, worldwide and even supranational regulation rules are implemented as a way to defend basic human values and make sure the protection of human rights around the sector. systems that offer algorithmic answers to prison problems using synthetic intelligence (AI) gear will perhaps serve to produce very meaningful consequences in phrases of human rights. but, algorithms to be used need to no longer be evolved with the aid of only pc professionals, however additionally want the contribution of folks who are familiar with law, values, judicial choices, and even the social and political culture of the society to which it'll provide answers. otherwise, even supposing the set of rules works perfectly, it may not be well suited with the values of the society in which it is applied. The present day traits involving using AI techniques in legal systems suggest that artificial law will come to be a brand new subject within the area of law.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 825217 Evaluation of Fetal brain using Magnetic Resonance Imaging
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies.Keywords: brain, fetal, MRI, imaging
Procedia PDF Downloads 7925216 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 14425215 Heritage Value and Industrial Tourism Potential of the Urals, Russia
Authors: Anatoly V. Stepanov, Maria Y. Ilyushkina, Alexander S. Burnasov
Abstract:
Expansion of tourism, especially after WWII, has led to significant improvements in the regional infrastructure. The present study has revealed a lot of progress in the advancement of industrial heritage narrative in the Central Urals. The evidence comes from the general public’s increased fascination with some of Europe’s oldest mining and industrial sites, and the agreement of many stakeholders that the Urals industrial heritage should be preserved. The development of tourist sites in Nizhny Tagil and Nevyansk, gold-digging in Beryosovsky, gemstone search in Murzinka, and the progress with the Urals Gemstone Ring project are the examples showing the immense opportunities of industrial heritage tourism development in the region that are still to be realized. Regardless of the economic future of the Central Urals, whether it will remain an industrial region or experience a deeper deindustrialization, the sprouts of the industrial heritage tourism should be advanced and amplified for the benefit of local communities and the tourist community at large as it is hard to imagine a more suitable site for the discovery of industrial and mining heritage than the Central Urals Region of Russia.Keywords: industrial heritage, mining heritage, Central Urals, Russia
Procedia PDF Downloads 13825214 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming
Authors: Milind Chaudhari, Suhail Balasinor
Abstract:
Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.Keywords: big data, IoT, vertical farming, indoor farming
Procedia PDF Downloads 17625213 Synthesis of Quinazoline Derivatives as Selective Inhibitors of Cyclooxygenase-1 Enzyme
Authors: Marcela Dvorakova, Lenka Langhansova, Premysl Landa
Abstract:
A series of quinazoline derivatives bearing aromatic rings in 2- and 4-positions were prepared and tested for their biological activity. Firstly, the compounds were evaluated for their potential to inhibit various kinases, such as autophagy activating kinase ULK1, 3-Phosphoinositide-dependent kinase 1, and TANK-binding kinase 1. None of the compounds displayed any activity on these kinases. Secondly, the compounds were tested for their anti-inflammatory activity expressed as cyclooxygenase (COX) isoforms and 5-lipoxygenase (5-LOX) inhibition. Three of the compounds showed significant selectivity towards COX-1 isoform (COX-2/COX-1 SI = 20-30). They inhibited COX-1 in a single-digit µM range. There was also one compound that exhibited inhibitory activity towards all three tested enzymes in µM range (IC50COX-1 = 1.9 µM; IC50COX-2 and 5-LOX = 10.1µM. COX-1 inhibition was until recently considered undesirable due to COX-1 constitutive expression in most cell types and tissues. Thus, there are not many compounds known with selective COX-1 activity. However, it is now believed that COX-1 plays an important role in the pathophysiology of several acute and chronic disorders, including cancer or neurodegenerative diseases. Thus, the discovery of effective COX-1 selective inhibitors is desirable and important.Keywords: cyclooxygenases, kinases, lipoxygenases, quinazolines
Procedia PDF Downloads 13525212 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector
Authors: Sanaz Moayer, Fang Huang, Scott Gardner
Abstract:
In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management
Procedia PDF Downloads 41625211 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt
Authors: A. Anis, W. Bekheet, A. El Hakim
Abstract:
Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.Keywords: road safety management system, road crash, road fatality, road injury
Procedia PDF Downloads 15225210 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 49125209 The Applicability of Just Satisfaction in Inter-State Cases: A Case Study of Cyprus versus Turkey
Authors: Congrui Chen
Abstract:
The European Court of Human Rights (hereinafter ECtHR) delivered its judgment of just satisfaction on the case of Cyprus v. Turkey, ordering a lump sum of 9,000,000 euros as the just compensation. It is the first time that the ECtHR applied the Article 41 of just compensation in an inter-state case, and it stands as the highest amount of just compensation awarded in the history of the ECtHR. The Cyprus v. Turkey case, which represents the most crucial contribution to European peace in the history of the court. This thesis uses the methodologies of textual research, comparison analysis, and case law study to go further on the following two questions specifically:(i) whether the just compensation is applicable in an inter-state case; (ii) whether such just compensation is of punitive nature. From the point of view of general international law, the essence of the case is the state's responsibility for the violation of individual rights. In other words, the state takes a similar diplomatic protection approach to seek relief. In the course of the development of international law today, especially with the development of international human rights law, States that have a duty to protect human rights should bear corresponding responsibilities for their violations of international human rights law. Under the specific system of the European Court of Human Rights, the just compensation for article 41 is one of the specific ways of assuming responsibility. At the regulatory level, the European Court of Human Rights makes it clear that the just satisfaction of article 41 of the Convention does not include punitive damages, as it relates to the issue of national sovereignty. Nevertheless, it is undeniable that the relief to the victim and the punishment to the responsible State are two closely integrated aspects of responsibility. In other words, compensatory compensation has inherent "punitive".Keywords: European Court of Human Right, inter-state cases, just satisfaction, punitive damages
Procedia PDF Downloads 27025208 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 30925207 Official Secrecy and Confidentiality in Tax Administration and Its Impact on Right to Access Information: Nigerian Perspectives
Authors: Kareem Adedokun
Abstract:
Official secrecy is one of the colonial vestiges which upholds non – disclosure of essential information for public consumption. Information, though an indispensable tool in tax administration, is not to be divulged by any person in an official duty of the revenue agency. As a matter o fact, the Federal Inland Revenue Service (Establishment) Act, 2007 emphasizes secrecy and confidentiality in dealing with tax payer’s document, information, returns and assessment in a manner reminiscent of protecting tax payer’s privacy in all situations. It is so serious that any violation attracts criminal sanction. However, Nigeria, being a democratic and egalitarian state recently enacted Freedom of Information Act which heralded in openness in governance and takes away the confidentialities associated with official secrets Laws. Official secrecy no doubts contradicts the philosophy of freedom of information but maintaining a proper balance between protected rights of tax payers and public interest which revenue agency upholds is an uphill task. Adopting the Doctrinal method, therefore, the author of this paper probes into the real nature of the relationship between taxpayers and Revenue Agencies. It also interfaces official secrecy with the doctrine of Freedom of Information and consequently queries the retention of non – disclosure clause under Federal Inland Revenue Service (Establishment) Act (FIRSEA) 2007. The paper finds among others that non – disclosure provision in tax statutes particularly as provided for in FIRSEA is not absolute; so also is the constitutional rights and freedom of information and unless the non – disclosure clause finds justification under any recognized exemption provided under the Freedom of Information Act, its retention is antithesis to democratic ethos and beliefs as it may hinder public interest and public order.Keywords: confidentiality, information, official secrecy, tax administration
Procedia PDF Downloads 34225206 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40425205 A Diagnostic Study of Rape Culture in India
Authors: V. U. Ameera
Abstract:
Rape has become an epidemic in India. Rape becomes a repressive weapon, which used to make them silent or used sometimes as a mode of punishment. Even for marrying above their status or for caste violation through a marriage of their choice, women are sentenced for mass rape, and the retribution is done in the presence of her family and villagers. Dalit or lower class women are brutally raped in a process of chastisement carried out by the upper class to keep the former always under their feet. Even in police stations, women are raped so that, their wretched condition will compel them to blurt out the truth. In a patriarchal society, for every trespass of woman, she is retaliated with a trespass into her body, which they think is the finest fine she can pay, as they are still driven by Victorian morality and believe once ‘the jewel’ is stolen, it is stolen forever. Even when the reports of brutal rapes comes out, those who are in responsible position also take the girls to task for going out in inappropriate time. As it is elsewhere in the world, in India too rape is a destructive weapon used to destroy men folk morally and psychologically, as they deem their honor rest in their protecting the purity of their women. During the communal skirmishes, as it is evident from Gujarat and Muzzafar Nagar recently, women are subjected to mass rape so that they can terrorize their men. Even women writers are threatened with rape for criticizing the maneuvers and manipulations of political parties. This becomes possible because of the undue weight given to the chastity of women. This study intends to analyze the nature of rapes occurring in India, including its use as a tool to establish and perpetuate the dominant position of men in social power structures. The study reveals how society, media and literature have imbibed and spread the notion of this sacred glass bowl which is the proud possession of men, the breaking of which steals them of their honor.Keywords: guardians of chastity, patriarchal mindset, power tool, punishment rape
Procedia PDF Downloads 21725204 An Empirical Study of the Impacts of Big Data on Firm Performance
Authors: Thuan Nguyen
Abstract:
In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient
Procedia PDF Downloads 24625203 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 408