Search results for: residential renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9175

Search results for: residential renewable energy

8605 Sustainable Building Design for Energy Efficiency and Healthier Electromagnetic Environment

Authors: Riadh Habash, Kristina Djukic, Gandhi Habash

Abstract:

Sustainable design is one of the emerging milestones in building construction. This concept is defined as buildings that on a yearly average consume as much energy as they generate using renewable energy sources. Realization of sustainable buildings requires a wide range of technologies, systems and solutions with varying degrees of complexity and sophistication, depending upon the location and surrounding environmental conditions. This paper will address not only the role of the above technologies and solutions but will provide solutions to reduce the electromagnetic fields (EMFs) in the building as much as possible so that the occupiers can recover from electro-hyper-sensitivity, if any. The objective is to maximize energy efficiency, optimize occupant comfort, reduce dependency on the grid and provide safer and healthier EMF environment especially for hypersensitive people. Creative architectural and engineering solutions that capitalize on the design of energy efficient technologies; combined cooling, heating and power (CCHP) microgrid (MG); and EMF mitigation will be presented.

Keywords: sustainable buildings, energy efficiency, thermal simulation, electromagnetic environment

Procedia PDF Downloads 302
8604 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan

Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa

Abstract:

Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.

Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement

Procedia PDF Downloads 243
8603 An Assessment of Housing Affordability and Safety Measures in the Varied Residential Area of Lagos, A Case Study of the Amuwo-Odofin Local Government Area in Lagos State

Authors: Jubril Olatunbosun Akinde

Abstract:

Unplanned population growth are mostly attributed to a lack of infrastructural facilities and poor economic condition in the rural dwellings and the incidence of rural-urban migration, which has resulted in severe housing deficiency in the urban centre, with a resultant pressure on housing delivery in the cities. Affordable housing does not only encompass environmental factors that make living acceptable and comfortable, which include good access routes, ventilation, sanitation and access to other basic human needs, which include water and safety. The research assessed the housing affordability and safety measures in the varied residential area of lagos by examining the demographic and socioeconomic attributes of residents; examining the existing residential safety measures; by examining the residential quality in terms of safety; the researcher therefore examined if relationship between housing affordability and safety in the varied residential areas. The research adopted the bartlett, kotrlik and higgins (2001) method of t-test to determine the sample size which specifies different populations at different levels of significance (α). The researcher adopted primary data which was sourced from a field survey where the sample population was simply randomly selected to give a member of the population an equal chance of being selected, therefore, the sample size for the field survey was two hundred (200) respondents, and subjected to necessary testing. The research come to conclusion that housing safety and security is the responsibility of every resident, the landlords/landladies possess a better sense of security in their neighbourhood than renters in the community, therefore they need to be aware of their responsibility of ensuring the safety of lives and property.

Keywords: housing, housing affordability, housing security, residential, residential quality

Procedia PDF Downloads 112
8602 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 109
8601 Study on Surface Morphology and Reflectance of Solar Cells Applied in Pyramid Structures

Authors: Zong-Sheng Chen

Abstract:

With the advancement of technology, human activities have increased greenhouse gas emissions and fossil fuel energy production, leading to increasingly severe global warming. To mitigate global warming, energy conservation and carbon reduction have become global goals. Solar energy, a renewable energy source, not only helps achieve energy conservation and carbon reduction but also serves as an efficient energy generation method. Solar energy, derived from sunlight, is an endless and promising energy source capable of meeting high energy demands sustainably. In recent years, many countries around the world have been developing the solar energy industry, and Taiwan is no exception. Positioned in the subtropical region, Taiwan possesses geographical advantages conducive to solar energy utilization. Furthermore, Taiwan's well-developed semiconductor technology and sophisticated equipment make it highly suitable for the development of high-efficiency solar cells. This study focuses on investigating the anti-reflection properties of solar cells. Through metal-assisted chemical etching, pyramid structures are etched to allow sunlight to pass through, achieving secondary or higher-order reflections on the surface of these structures. This trapping of light within the substrate reduces reflection rates and increases conversion efficiency.

Keywords: solar cell, reflectance, pyramidal structure, potassium hydroxide

Procedia PDF Downloads 67
8600 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 76
8599 Energy Initiatives for Turkey

Authors: A.Beril Tugrul, Selahattin Cimen

Abstract:

Dependency of humanity on the energy is ever-increasing today and the energy policies are reaching undeniable and un-ignorable dimensions steering the political events as well. Therefore, energy has the highest priority for Turkey like any other country. In this study, the energy supply security for Turkey evaluated according to the strategic criteria of energy policy. Under these circumstances, different alternatives are described and assessed with in terms of the energy expansion of Turkey. With this study, different opportunities in the energy expansion of Turkey is clarified and emphasized.

Keywords: energy policy, energy strategy, future projection, Turkey

Procedia PDF Downloads 389
8598 Perception of Indoor Environmental Qualities in Residential Buildings: A Quantitative Case Survey for Turkey and Iran

Authors: Majid Bahramian, Kaan Yetilmezsoy

Abstract:

Environmental performance of residential buildings been a hotspot for the research community, however, the indoor environmental quality significantly overlooked in the literature. The paper is motivated by the understanding of the occupants from the indoor environmental qualities and seeks to find the satisfaction level in two high-rise green-certified residential buildings. Views of more than 250 respondents in each building were solicited on 15 Indoor Environmental Qualities (IEQ) parameters. Findings suggest that occupants are generally satisfied with five critical aspects of IEQ, but some unsatisfaction exists during operation phase. The results also indicate that the green build certification systems for new buildings have some deficiencies which affect the actual environmental performance of green buildings during operation. Some reasons were suggested by the occupants of which the design-focus construction and lack of monitoring after certification were the most critical factors. Among the crucial criteria for environmental performance assessment of green buildings, energy saving, reduction of Greenhouse Gases (GHG) emissions, environmental impacts on neighborhood area, waste reduction and IEQs, were the most critical factors dominating the performance, in a descending order. This study provides valuable information on the performance of IEQ parameters of green building and gives a deeper understanding for stakeholders and companies involved in construction sector with the relevant feedback for their decision-making on current and future projects.

Keywords: indoor environmental qualities, green buildings, occupant satisfaction, environmental performance

Procedia PDF Downloads 86
8597 The Impact of Gender and Residential Background on Racial Integration: Evidence from a South African University

Authors: Morolake Josephine Adeagbo

Abstract:

South Africa is one of those countries that openly rejected racism, and this is entrenched in its Bill of Rights. Despite the acceptance and incorporation of racial integration into the South Africa Constitution, the implementation within some sectors, most especially the educational sector, seems difficult. Recent occurrences of racism in some higher institutions of learning in South Africa are indications that racial integration / racial transformation is still farfetched in the country’s higher educational sector. It is against this background that this study was conducted to understand how gender and residential background influence racial integration in a South African university which was predominantly a white Afrikaner institution. Using a quantitative method to test the attitude of different categories of undergraduate students at the university, this study found that the factors- residential background and gender- used in measuring student’s attitude do not necessarily have a significant relationship towards racial integration. However, this study concludes with a call for more research with a range of other factors in order to better understand how racial integration can be promoted in South African institutions of higher learning.

Keywords: racial integration, gender, residential background, transformation

Procedia PDF Downloads 441
8596 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 314
8595 Research Methodology of Living Environment of Modern Residential Development in St. Petersburg

Authors: Kalina Alina Aidarovna, Khayrullina Yulia Sergeevna

Abstract:

The question of forming quality housing and living environment remains a vexed problem in the current situation of high-rise apartment building in big cities of Russia. At this start up stage of the modern so-called "mass housing" market it needs to identify key quality characteristics on a different scale from apartments to the district. This paper describes the methodology of qualitative assessment of modern mass housing construction, made on the basis of the ITMO university in cooperation with the institute of spatial planning "Urbanika," based on the case study of St. Petersburg’s residential mass housing built in 2011-2014. The methodology of the study of housing and living environment goes back to the native and foreign urbanists of 60s - 80s, such Jane Jacobs, Jan Gehl, Oscar Newman, Krasheninnikov, as well as Sommer, Stools, Kohnen and Sherrod, Krasilnikova, Sychev, Zhdanov, Tinyaeva considering spatial features of living environment in a wide range of its characteristics (environmental control, territorial and personalization, privacy, etc.). Assessment is carrying out on the proposed system of criteria developed for each residential environment scale-district, quarter, courtyard, building surrounding grounds, houses, and flats. Thus the objects of study are planning unit of residential development areas (residential area, neighborhood, quarter) residential units areas (living artist, a house), and households (apartments) consisting of residential units. As a product of identified methodology, after the results of case studies of more than 700 residential complexes in St. Petersburg, we intend the creation of affordable online resource that would allow conducting a detailed qualitative evaluation or comparative characteristics of residential complexes for all participants of the construction market-developers, designers, realtors and buyers. Thereby the main objective of the rating may be achieved to improve knowledge, requirements, and demand for quality housing and living environment among the major stakeholders of the construction market.

Keywords: methodology of living environment, qualitative assessment of mass housing, scale-district, vexed problem

Procedia PDF Downloads 459
8594 Design of a Plant to Produce 100,000 MTPY of Green Hydrogen from Brine

Authors: Abdulrazak Jinadu Otaru, Ahmed Almulhim, Hassan Alhassan, Mohammed Sabri

Abstract:

Saudi Arabia is host to a state-owned oil and gas corporation, known as Saudi ARAMCO, that is responsible for the highest emissions of carbon dioxide (CO₂) due to the heavy reliance on fossil fuels as an energy source for various sectors such as transportation, aerospace, manufacturing, and residential use. Unfortunately, the detrimental consequences of CO₂ emissions include escalating temperatures in the Middle East region, posing significant obstacles in terms of food security and water scarcity for the Kingdom of Saudi Arabia. As part of the Saudi Vision 2030 initiative, which aims to reduce the country's reliance on fossil fuels by 50 %, this study focuses on designing a plant that will produce approximately 100,000 metric tons per year (MTPY) of green hydrogen (H₂) using brine as the primary feedstock. The proposed facility incorporates a double electrolytic technology that first separates brine or sodium chloride (NaCl) into sodium hydroxide, hydrogen gas, and chlorine gas. The sodium hydroxide is then used as an electrolyte in the splitting of water molecules through the supply of electrical energy in a second-stage electrolyser to produce green hydrogen. The study encompasses a comprehensive analysis of process descriptions and flow diagrams, as well as materials and energy balances. It also includes equipment design and specification, cost analysis, and considerations for safety and environmental impact. The design capitalizes on the abundant brine supply, a byproduct of the world's largest desalination plant located in Al Jubail, Saudi Arabia. Additionally, the design incorporates the use of available renewable energy sources, such as solar and wind power, to power the proposed plant. This approach not only helps reduce carbon emissions but also aligns with Saudi Arabia's energy transition policy. Furthermore, it supports the United Nations Sustainable Development Goals on Sustainable Cities and Communities (Goal 11) and Climate Action (Goal 13), benefiting not only Saudi Arabia but also other countries in the Middle East.

Keywords: plant design, electrolysis, brine, sodium hydroxide, chlorine gas, green hydrogen

Procedia PDF Downloads 47
8593 Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques

Authors: Rowane May A. Fesalbon, Greyland C. Agno, Jodel L. Cuasay, Dindo A. Malonzo, Ma. Rosario Concepcion O. Ang

Abstract:

The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential.

Keywords: ArcSWAT, renewable energy, hydrologic model, hydropower, GIS

Procedia PDF Downloads 313
8592 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: valuation, property rights, information, institutions, trust, salience

Procedia PDF Downloads 379
8591 Passive Greenhouse Systems in Poland

Authors: Magdalena Grudzińska

Abstract:

Passive systems allow solar radiation to be converted into thermal energy thanks to appropriate building construction. Greenhouse systems are particularly worth attention, due to the low costs of their realization and strong architectural appeal. The paper discusses the energy effects of using passive greenhouse systems, such as glazed balconies, in an example residential building. The research was carried out for five localities in Poland, belonging to climatic zones different in terms of external air temperature and insolation: Koszalin, Poznań, Lublin, Białystok and Zakopane The analysed apartment had a floor area of approximately 74 m² Three thermal zones were distinguished in the flat - the balcony, the room adjacent to it, and the remaining space, for which various internal conditions were defined. Calculations of the energy demand were made using the dynamic simulation program, based on the control volume method. The climatic data were represented by Typical Meteorological Years, prepared on the basis of source data collected from 1971 to 2000. In each locality, the introduction of a passive greenhouse system led to a lower demand for heating in the apartment, and the shortening of the heating season. The smallest effectiveness of passive solar energy systems was noted in Białystok. Demand for heating was reduced there by 14.5% and the heating season remained the longest, due to low temperatures of external air and small sums of solar radiation intensity. In Zakopane, energy savings came to 21% and the heating season was reduced to 107 days, thanks to the greatest insolation during winter. The introduction of greenhouse systems caused an increase in cooling demand in the warmer part of the year, but total energy demand declined in each of the discussed places. However, potential energy savings are smaller if the building's annual life cycle is taken into consideration, and amount from 5.6% up to 14%. Koszalin and Zakopane are localities in which the greenhouse system allows the best energy results to be achieved. It should be emphasized that favourable conditions for introducing greenhouse systems are connected with different climatic conditions. In the seaside area (Koszalin) they result from high temperatures in the heating season and the smallest insolation in the summer period, while in the mountainous area (Zakopane) they result from high insolation in the winter and low temperatures in the summer. In the region of middle and middle-eastern Poland active systems (such as solar energy collectors or photovoltaic panels) could be more beneficial, due to high insolation during summer. It is assessed that passive systems do not eliminate the need for traditional heating in Poland. They can, however, substantially contribute to lower use of non-renewable fuels and the shortening of the heating season. The calculations showed diversification in the effectiveness of greenhouse systems resulting from climatic conditions, and allowed to identify areas which are the most suitable for the passive use of solar radiation.

Keywords: solar energy, passive greenhouse systems, glazed balconies, climatic conditions

Procedia PDF Downloads 368
8590 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings

Authors: Sandeep Bandarwadkar, Tadas Zdankus

Abstract:

To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.

Keywords: heat transfer, accumulation of heat, underground building, soil charge

Procedia PDF Downloads 71
8589 Optimization of Alkali Assisted Microwave Pretreatments of Sorghum Straw for Efficient Bioethanol Production

Authors: Bahiru Tsegaye, Chandrajit Balomajumder, Partha Roy

Abstract:

The limited supply and related negative environmental consequence of fossil fuels are driving researcher for finding sustainable sources of energy. Lignocellulose biomass like sorghum straw is considered as among cheap, renewable and abundantly available sources of energy. However, lignocellulose biomass conversion to bioenergy like bioethanol is hindered due to the reluctant nature of lignin in the biomass. Therefore, removal of lignin is a vital step for lignocellulose conversion to renewable energy. The aim of this study is to optimize microwave pretreatment conditions using design expert software to remove lignin and to release maximum possible polysaccharides from sorghum straw for efficient hydrolysis and fermentation process. Sodium hydroxide concentration between 0.5-1.5%, v/v, pretreatment time from 5-25 minutes and pretreatment temperature from 120-2000C were considered to depolymerize sorghum straw. The effect of pretreatment was studied by analyzing the compositional changes before and after pretreatments following renewable energy laboratory procedure. Analysis of variance (ANOVA) was used to test the significance of the model used for optimization. About 32.8%-48.27% of hemicellulose solubilization, 53% -82.62% of cellulose release, and 49.25% to 78.29% lignin solubilization were observed during microwave pretreatment. Pretreatment for 10 minutes with alkali concentration of 1.5% and temperature of 1400C released maximum cellulose and lignin. At this optimal condition, maximum of 82.62% of cellulose release and 78.29% of lignin removal was achieved. Sorghum straw at optimal pretreatment condition was subjected to enzymatic hydrolysis and fermentation. The efficiency of hydrolysis was measured by analyzing reducing sugars by 3, 5 dinitrisylicylic acid method. Reducing sugars of about 619 mg/g of sorghum straw were obtained after enzymatic hydrolysis. This study showed a significant amount of lignin removal and cellulose release at optimal condition. This enhances the yield of reducing sugars as well as ethanol yield. The study demonstrates the potential of microwave pretreatments for enhancing bioethanol yield from sorghum straw.

Keywords: cellulose, hydrolysis, lignocellulose, optimization

Procedia PDF Downloads 271
8588 Engineering Strategies Towards Improvement in Energy Storage Performance of Ceramic Capacitors for Pulsed Power Applications

Authors: Abdul Manan

Abstract:

The necessity for efficient and cost-effective energy storage devices to intelligently store the inconsistent energy output from modern renewable energy sources is peaked today. The scientific community is struggling to identify the appropriate material system for energy storage applications. Countless contributions by researchers worldwide have now helped us identify the possible snags and limitations associated with each material/method. Energy storage has attracted great attention for its use in portable electronic devices military field. Different devices, such as dielectric capacitors, supercapacitors, and batteries, are used for energy storage. Of these, dielectric capacitors have high energy output, a long life cycle, fast charging and discharging capabilities, work at high temperatures, and excellent fatigue resistance. The energy storage characteristics have been studied to be highly affected by various factors, such as grain size, optimized compositions, grain orientation, energy band gap, processing techniques, defect engineering, core-shell formation, interface engineering, electronegativity difference, the addition of additives, density, secondary phases, the difference of Pmax-Pr, sample thickness, area of the electrode, testing frequency, and AC/DC conditions. The data regarding these parameters/factors are scattered in the literature, and the aim of this study is to gather the data into a single paper that will be beneficial for new researchers in the field of interest. Furthermore, control over and optimizing these parameters will lead to enhancing the energy storage properties.

Keywords: strategies, ceramics, energy storage, capacitors

Procedia PDF Downloads 77
8587 Understanding Co-Living Experience through University Residential Halls - A Pilot Study

Authors: Michelle W. T. Cheng, Yau Y.

Abstract:

Hong Kong continues to be ranked as the least affordable housing market in the world, making co-living a feasible alternative in this high-density city. Although the number of co-living residences has increased in Hong Kong, co-living as a housing typology is still a new concept for many. Little research has been conducted on this new housing typology, let alone the co-living experience. To address this gap, this study targeted student residents in university residential halls as it is a more controlled environment (e.g., with established rules and guidelines regarding the use of communal facilitates and housing management) for studying co-living experiences in Hong Kong. To date, no research study has systematically identified anti-social behavior (ASB) in co-living spaces. Since ASB can be influenced by factors such as social norms and individual interpretation, it has an elastic definition that results in different levels of acceptance. Unlike other types of housing, co-living spaces can be potentially more influenced by the neighborhood as residents share more time and space. As a pilot study, this research targeted one university residential hall to examine student co-living experiences. To clarify, the research question is focused on identifying the social factors that impact the residential satisfaction of those who co-living in residential halls. Quantitative data (n=100) were collected via a structured questionnaire to measure the residential environment, including ASB, social neighboring, community attachment, and perceived hall management efficacy. The survey was distributed at the end of the academic year to ensure that respondents had at least one year of first-hand experience living in a co-living space. To gather qualitative data, follow-up focus group interviews were conducted with 16 participants who completed the survey. The semi-structured interviews aimed to elicit the participants' perspectives on their co-living experience. Through analyzing their co-living experiences, the researcher identified factors that affected their residential satisfaction and provided recommendations to enhance their co-living experience.

Keywords: co-living, university residential hall, anti-social behabiour, neighbour relationship, community attachement

Procedia PDF Downloads 85
8586 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
8585 Spatial Scale of Clustering of Residential Burglary and Its Dependence on Temporal Scale

Authors: Mohammed A. Alazawi, Shiguo Jiang, Steven F. Messner

Abstract:

Research has long focused on two main spatial aspects of crime: spatial patterns and spatial processes. When analyzing these patterns and processes, a key issue has been to determine the proper spatial scale. In addition, it is important to consider the possibility that these patterns and processes might differ appreciably for different temporal scales and might vary across geographic units of analysis. We examine the spatial-temporal dependence of residential burglary. This dependence is tested at varying geographical scales and temporal aggregations. The analyses are based on recorded incidents of crime in Columbus, Ohio during the 1994-2002 period. We implement point pattern analysis on the crime points using Ripley’s K function. The results indicate that spatial point patterns of residential burglary reveal spatial scales of clustering relatively larger than the average size of census tracts of the study area. Also, spatial scale is independent of temporal scale. The results of our analyses concerning the geographic scale of spatial patterns and processes can inform the development of effective policies for crime control.

Keywords: inhomogeneous K function, residential burglary, spatial point pattern, spatial scale, temporal scale

Procedia PDF Downloads 344
8584 Energy Atlas: Geographic Information Systems-Based Energy Analysis and Planning Tool

Authors: Katarina Pogacnik, Ursa Zakrajsek, Nejc Sirk, Ziga Lampret

Abstract:

Due to an increase in living standards along with global population growth and a trend of urbanization, municipalities and regions are faced with an ever rising energy demand. A challenge has arisen for cities around the world to modify the energy supply chain in order to reduce its consumption and CO₂ emissions. The aim of our work is the development of a computational-analytical platform for dynamic support in decision-making and the determination of economic and technical indicators of energy efficiency in a smart city, named Energy Atlas. Similar products in this field focuse on a narrower approach, whereas in order to achieve its aim, this platform encompasses a wider spectrum of beneficial and important information for energy planning on a local or regional scale. GIS based interactive maps provide an extensive database on the potential, use and supply of energy and renewable energy sources along with climate, transport and spatial data of the selected municipality. Beneficiaries of Energy atlas are local communities, companies, investors, contractors as well as residents. The Energy Atlas platform consists of three modules named E-Planning, E-Indicators and E-Cooperation. The E-Planning module is a comprehensive data service, which represents a support towards optimal decision-making and offers a sum of solutions and feasibility of measures and their effects in the area of efficient use of energy and renewable energy sources. The E-Indicators module identifies, collects and develops optimal data and key performance indicators and develops an analytical application service for dynamic support in managing a smart city in regards to energy use and sustainable environment. In order to support cooperation and direct involvement of citizens of the smart city, the E-cooperation is developed with the purpose of integrating the interdisciplinary and sociological aspects of energy end-users. Interaction of all the above-described modules contributes to regional development because it enables for a precise assessment of the current situation, strategic planning, detection of potential future difficulties and also the possibility of public involvement in decision-making. From the implementation of the technology in Slovenian municipalities of Ljubljana, Piran, and Novo mesto, there is evidence to suggest that the set goals are to be achieved to a great extent. Such thorough urban energy planning tool is viewed as an important piece of the puzzle towards achieving a low-carbon society, circular economy and therefore, sustainable society.

Keywords: circular economy, energy atlas, energy management, energy planning, low-carbon society

Procedia PDF Downloads 305
8583 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems

Authors: Jun Yuan

Abstract:

Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.

Keywords: shipping emission, electricity ship, charging station, optimal design

Procedia PDF Downloads 61
8582 Evaluation of Negative Air Ions in Bioaerosol Removal: Indoor Concentration of Airborne Bacterial and Fungal in Residential Building in Qom City, Iran

Authors: Z. Asadgol, A. Nadali, H. Arfaeinia, M. Khalifeh Gholi, R. Fateh, M. Fahiminia

Abstract:

The present investigation was conducted to detect the type and concentrations of bacterial and fungal bioaerosols in one room (bedroom) of each selected residential building located in different regions of Qom during February 2015 (n=9) to July 2016 (n=11). Moreover, we evaluated the efficiency of negative air ions (NAIs) in bioaerosol reduction in indoor air in residential buildings. In the first step, the mean concentrations of bacterial and fungal in nine sampling sites evaluated in winter were 744 and 579 colony forming units (CFU)/m3, while these values were 1628.6 and 231 CFU/m3 in the 11 sampling sites evaluated in summer, respectively. The most predominant genera between bacterial and fungal in all sampling sites were detected as Micrococcus spp. and Staphylococcus spp. and also, Aspergillus spp. and Penicillium spp., respectively. The 95% and 45% of sampling sites have bacterial and fungal concentrations over the recommended levels, respectively. In the removal step, we achieved a reduction with a range of 38% to 93% for bacterial genera and 25% to 100% for fungal genera by using NAIs. The results suggested that NAI is a highly effective, simple and efficient technique in reducing the bacterial and fungal concentration in the indoor air of residential buildings.

Keywords: bacterial, fungal, negative air ions (NAIs), indoor air, Iran

Procedia PDF Downloads 402
8581 Evaluation of Energy Supply and Demand Side Management for Residential Buildings in Ekiti State, Nigeria

Authors: Oluwatosin Samuel Adeoye

Abstract:

Ekiti State is an agrarian state located in south western part of Nigeria. The injected power to the Ado-Ekiti and the entire state are 25MW and 37.6 MW respectively. The estimated power demand for Ado Ekiti and Ekiti state were 29.01MW and 224.116MW respectively. The distributed power to the consumers is characterized with shortcomings which include: in-adequate supply, poor voltage regulation, improper usage, illiteracy and wastage. The power generation in Nigeria is presently 1680.60MW which does not match the estimated power demand of 15,000MW with a population of over 170 million citizens. This paper evaluates the energy utilization in Ado Ekiti metropolis, the wastage and its economic implication as well as effective means of its management. The use of direct interviews, administration of questionnaires, measurements of current and voltage with clamp multimeter, and simple mathematical approach were used for the purpose of evaluation. Recommendations were made with the view of reducing energy waste from mean value of 10.84% to 2% in order to reduce the cost implication such that the huge financial waste can be injected to other parts of the economy as well as the management of energy in Ekiti state.

Keywords: consumers, demand, energy, management, power supply, waste

Procedia PDF Downloads 340
8580 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.

Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi

Abstract:

With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.

Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition

Procedia PDF Downloads 474
8579 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 466
8578 Cascaded Multi-Level Single-Phase Switched Boost Inverter

Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho

Abstract:

Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.

Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter

Procedia PDF Downloads 334
8577 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data

Authors: Ming Wei

Abstract:

Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.

Keywords: big data, smart card data, travel pattern, land use

Procedia PDF Downloads 285
8576 On the Effectiveness of Electricity Market Development Strategies: A Target Model for a Developing Country

Authors: Ezgi Avci-Surucu, Doganbey Akgul

Abstract:

Turkey’s energy reforms has achieved energy security through a variety of interlinked measures including electricity, gas, renewable energy and energy efficiency legislation; the establishment of an energy sector regulatory authority; energy price reform; the creation of a functional electricity market; restructuring of state-owned energy enterprises; and private sector participation through privatization and new investment. However, current strategies, namely; “Electricity Sector Reform and Privatization Strategy” and “Electricity Market and Supply Security Strategy” has been criticized for various aspects. The present paper analyzes the implementation of the aforementioned strategies in the framework of generation scheduling, transmission constraints, bidding structure and general aspects; and argues the deficiencies of current strategies which decelerates power investments and creates uncertainties. We conclude by policy suggestions to eliminate these deficiencies in terms of price and risk management, infrastructure, customer focused regulations and systematic market development.

Keywords: electricity markets, risk management, regulations, balancing and settlement, bilateral trading, generation scheduling, bidding structure

Procedia PDF Downloads 553