Search results for: project progress prediction
7841 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3107840 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery
Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang
Abstract:
Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram
Procedia PDF Downloads 767839 Under the 'Umbrella' Project: A Volunteer-Mentoring Approach for Socially Disadvantaged University Students
Authors: Evridiki Zachopoulou, Vasilis Grammatikopoulos, Michail Vitoulis, Athanasios Gregoriadis
Abstract:
In the last ten years, the recent economic crisis in Greece has decreased the financial ability and strength of several families when it comes to supporting their children’s studies. As a result, the number of students who are significantly delaying or even dropping out of their university studies is constantly increasing. The students who are at greater risk for academic failure are those who are facing various problems and social disadvantages, like health problems, special needs, family poverty or unemployment, single-parent students, immigrant students, etc. The ‘Umbrella’ project is a volunteer-based initiative to tackle this problem at International Hellenic University. The main purpose of the project is to provide support to disadvantaged students at a socio-emotional, academic, and practical level in order to help them complete their undergraduate studies. More specifically, the ‘Umbrella’ project has the following goals: (a) to develop a consulting-supporting network based on volunteering senior students, called ‘i-mentors’. (b) to train the volunteering i-mentors and create a systematic and consistent support procedure for students at-risk, (c), to develop a service that, parallel to the i-mentor network will be ensuring opportunities for at-risk students to find a job, (d) to support students who are coping with accessibility difficulties, (e) to secure the sustainability of the ‘Umbrella’ project after the completion of the funding of the project. The innovation of the Umbrella project is in its holistic-person-centered approach that will be providing individualized support -via the i-mentors network- to any disadvantaged student that will come ‘under the Umbrella.’Keywords: peer mentoring, student support, socially disadvantaged students, volunteerism in higher education
Procedia PDF Downloads 2347838 Reflections of Young Language Learners’ and Teacher Candidates’ for ‘Easy English’ Project
Authors: F. Özlem Saka
Abstract:
There should be connections between universities and state schools in order to improve the quality of instruction. ELT department of Akdeniz University carries out a project named ‘Easy English’ with a state primary school in Antalya for 2 years. According to the Project requirements, junior students at university teach English to 3rd grade primary school students during the term. They are supposed to teach the topics planned before, preparing different activities for the students. This study reflects the ideas of both students at university and at state school related to the language programme carried out. Their ideas have been collected with a questionnaire consisting of similar structured questions. The result shows that both groups like the programme and evaluate it from their own perspectives. It is believed the efficient results of this project will lead to planning similar programmes for different levels. From this study, curriculum planners and teachers can get ideas to improve language teaching at primary level as both university students, being the teachers in the project and students at state primary school have positive feelings and thoughts about it.Keywords: foreign language teacher training, games in English teaching, songs in English teaching, teaching English to young learners
Procedia PDF Downloads 2007837 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6267836 Navigating Construction Project Outcomes: Synergy Through the Evolution of Digital Innovation and Strategic Management
Authors: Derrick Mirindi, Frederic Mirindi, Oluwakemi Oshineye
Abstract:
The ongoing high rate of construction project failures worldwide is often blamed on the difficulties of managing stakeholders. This highlights the crucial role of strategic management (SM) in achieving project success. This study investigates how integrating digital tools into the SM framework can effectively address stakeholder-related challenges. This work specifically focuses on the impact of evolving digital tools, such as Project Management Software (PMS) (e.g., Basecamp and Wrike), Building Information Modeling (BIM) (e.g., Tekla BIMsight and Autodesk Navisworks), Virtual and Augmented Reality (VR/AR) (e.g., Microsoft HoloLens), drones and remote monitoring, and social media and Web-Based platforms, in improving stakeholder engagement and project outcomes. Through existing literature with examples of failed projects, the study highlights how the evolution of digital tools will serve as facilitators within the strategic management process. These tools offer benefits such as real-time data access, enhanced visualization, and more efficient workflows to mitigate stakeholder challenges in construction projects. The findings indicate that integrating digital tools with SM principles effectively addresses stakeholder challenges, resulting in improved project outcomes and stakeholder satisfaction. The research advocates for a combined approach that embraces both strategic management and digital innovation to navigate the complex stakeholder landscape in construction projects.Keywords: strategic management, digital tools, virtual and augmented reality, stakeholder management, building information modeling, project management software
Procedia PDF Downloads 837835 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler
Authors: Yuichi Kida, Takuro Kida
Abstract:
In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission
Procedia PDF Downloads 1227834 Heavy Liquid Metal Coolant – the Key Safety Element in the Complex of New Nuclear Energy Technologies
Authors: A. Orlov, V. Rachkov
Abstract:
The future of Nuclear Energetics is seen in fast reactors with inherent safety working in the closed nuclear fuel cycle. The concept of inherent safety, which lies in deterministic elimination of the most severe accidents due to inherent properties of the reactor rather than through building up engineered barriers, is a cornerstone of success in ensuring safety and economic efficiency of future Nuclear Energetics. The focus of this paper is one of the key elements of inherent safety - the lead coolant of a nuclear reactor. Advantages of lead coolant for reactor application, influence on safety are reviewed. BREST-OD-300 fast reactor, currently being developed in Russia withing the “Proryv” Project utilizes lead coolant and a special set of measures and devices, called technology of lead coolant that ensures safe operation in a wide range of temperatures. Here these technological elements are reviewed, and current progress in their development is discussed.Keywords: BREST-OD-300. , fast reactor, inherent safety, lead coolant
Procedia PDF Downloads 1527833 Encouraging the Development of Scientific Literacy in Early Childhood Institutions: Croatian Experience
Authors: L. Vujičić, Ž. Ivković, Ž. Boneta
Abstract:
There is a widespread belief in everyday discourse that science subjects (physics, chemistry and biology) are, along with math, the most difficult school subjects in the education of an individual. This assumption is usually justified by the following facts: low GPA in these subjects, the number of pupils who fail these subjects is high in comparison to other subjects, and the number of pupils interested in continuing their studies in the fields with a focus on science subjects is lower compared to non-science-oriented fields. From that perspective, the project: “Could it be different? How do children explore it?” becomes extremely interesting because it is focused on young children and on the introduction of new methods, with aim of arousing interest in scientific literacy development in 10 kindergartens by applying the methodology of an action research, with an ethnographic approach. We define scientific literacy as a process of encouraging and nurturing the research and explorative spirit in children, as well as their natural potential and abilities that represent an object of scientific research: to learn about exploration by conducting exploration. Upon project completion, an evaluation questionnaire was created for the parents of the children who had participated in the project, as well as for those whose children had not been involved in the project. The purpose of the first questionnaire was to examine the level of satisfaction with the project implementation and its outcomes among those parents whose children had been involved in the project (N=142), while the aim of the second questionnaire was to find out how much the parents of the children not involved (N=154) in this activity were interested in this topic.Keywords: documenting, early childhood education, evaluation questionnaire for parents, scientific literacy development
Procedia PDF Downloads 2537832 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings
Authors: Omar M. Elmabrouk
Abstract:
The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating
Procedia PDF Downloads 5547831 Educational Experience and the Investigation Results: Creation of New Healthy Products
Authors: G. Espinosa Garza, I. Loera, N. Antonyan
Abstract:
In the last decades, teaching in particular engineering subjects is going through a significative problem. A quick evaluation of the entrepreneurial surroundings makes it more difficult for students to identify the course contents with real situations related with their future professions. Proposing teaching through challenges or problem-based projects, and real-life situations is turning into an important challenge for any university-level educator. The objective of this work is to present the educational experience and the investigation results taken through the Project Viability course, done by a group of professors and students from the Technologic of Monterrey. Currently, in Mexico, the orange peels are considered a dispose and they are not being utilized as an alternative to create subproducts. However, there is a great opportunity in its use as a raw material with the goal to originate the waste from the local citric firms or business. The project challenge consisted in the development of edible products from the orange peel with the intention to generate new healthy products. With this project, apart from the obtainment of the original results, the accomplishment consisted in creating a learning atmosphere, where students together with the professors were able to plan, evaluate, and implement the project related with the creative, innovative, and sustainable processes with the goal to apply it in the development of local solutions. In the present article, the pedagogic methodologies that allowed to carry out this project will be discussed.Keywords: engineering subjects, learning project, orange peel, sustainable process
Procedia PDF Downloads 2897830 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 367829 Evaluating Construction Project Outcomes: Synergy Through the Evolution of Digital Innovation and Strategic Management
Authors: Mirindi Derrick, Mirindi Frederic, Oluwakemi Oshineye
Abstract:
Abstract: The ongoing high rate of construction project failures worldwide is often blamed on the difficulties of managing stakeholders. This highlights the crucial role of strategic management (SM) in achieving project success. This study investigates how integrating digital tools into the SM framework can effectively address stakeholder-related challenges. This work specifically focuses on the impact of evolving digital tools, such as Project Management Software (PMS) (e.g., Basecamp and Wrike), Building Information Modeling (BIM) (e.g., Tekla BIMsight and Autodesk Navisworks), Virtual and Augmented Reality (VR/AR) (e.g., Microsoft HoloLens), drones and remote monitoring, and social media and Web-Based platforms, in improving stakeholder engagement and project outcomes. Through existing literature with examples of failed projects, the study highlights how the evolution of digital tools will serve as facilitators within the strategic management process. These tools offer benefits such as real-time data access, enhanced visualization, and more efficient workflows to mitigate stakeholder challenges in construction projects. The findings indicate that integrating digital tools with SM principles effectively addresses stakeholder challenges, resulting in improved project outcomes and stakeholder satisfaction. The research advocates for a combined approach that embraces both strategic management and digital innovation to navigate the complex stakeholder landscape in construction projects.Keywords: strategic management, digital tools, virtual and augmented reality, stakeholder management, building information modeling, project management software
Procedia PDF Downloads 497828 A Method for Allocation of Smart Intersections Using Traffic Information
Authors: Sang-Tae Ji, Jeong-Woo Park, Jun-Ho Park, Kwang-Woo Nam
Abstract:
This study aims is to suggest the basic factors by considering the priority of intersection in the diffusion project of Smart intersection. Busan Metropolitan City is conducting a smart intersection project for efficient traffic management. The smart intersection project aims to make breakthrough improvement of the intersection congestion by optimizing the signal system using CCTV (closed-circuit television camera) image analysis technology. This study investigated trends of existing researches and analyzed by setting three things of traffic volume, characteristics of intersection road, and whether or not to conduct the main arterial road as factors for selecting new intersection when spreading smart intersection. Using this, we presented the priority of the newly installed intersection through the present situation and analysis for the Busan Metropolitan City which is the main destination of the spreading project of the smart intersection. The results of this study can be used as a consideration in the implementation of smart intersection business.Keywords: CCTV, GIS, ICT, Smart City, smart intersection
Procedia PDF Downloads 3867827 Conceptualizing Power, Progress and Time: An Essay on Islam and Democracy in the Arab World
Authors: Kechikeche Nabil
Abstract:
The MENA region has undergone many mutations throughout history. The most significant one was, yet, to happen during the colonial era, where the Arab Muslim ‘cosmic’ clock was recalibrated to match a more or less modern perception of time. As for modern civic and political experiences of life, they were left in a state of inertia. This article considers the problematic amalgam of traditional Islam, modernity and democratization in the Arab world, as well as the effects on the configuration of recent progressive endeavours. It is argued that the assimilation of democratic ethos - as a requisite for modernity - depends on the assimilation of power, progress and time, by what is referred to as the Umma. Drawing on postmodern and political literature, it is suggested that because of a conceptualization which draws mainly on traditional Islam, the Umma and the state in the Arab world remain in conflict while, at times, they appear to act collaboratively, either to embrace modernity or to obstruct democratization.Keywords: Islam, democracy, Arab world, modernity
Procedia PDF Downloads 437826 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3227825 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project
Authors: Debasis Sarkar
Abstract:
Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.Keywords: building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail
Procedia PDF Downloads 3107824 An Empirical Investigation of Factors Influencing Construction Project Selection Processes within the Nigeria Public Sector
Authors: Emmanuel U. Unuafe, Oyegoke T. Bukoye, Sandhya Sastry, Yanqing Duan
Abstract:
Globally, there is increasing interest in project management due to a shortage in infrastructure services supply capability. Hence, it is of utmost importance that organisations understand that choosing a particular project over another is an opportunity cost – tying up the organisations resources. In order to devise constructive ways to bring direction, structure, and oversight to the process of project selection has led to the development of tools and techniques by researchers and practitioners. However, despite the development of various frameworks to assist in the appraisal and selection of government projects, failures are still being recorded with government projects. In developing countries, where frameworks are rarely used, the problems are compounded. To improve the situation, this study will investigate the current practice of construction project selection processes within the Nigeria public sector in order to inform theories of decision making from the perspective of developing nations and project management practice. Unlike other research around construction projects in Nigeria this research concentrate on factors influencing the selection process within the Nigeria public sector, which has received limited study. The authors report the findings of semi-structured interviews of top management in the Nigerian public sector and draw conclusions in terms of decision making extant theory and current practice. Preliminary results from the data analysis show that groups make project selection decisions and this forces sub-optimal decisions due to pressure on time, clashes of interest, lack of standardised framework for selecting projects, lack of accountability and poor leadership. Consequently, because decision maker is usually drawn from different fields, religious beliefs, ethnic group and with different languages. The choice of a project by an individual will be greatly influence by experience, political precedence than by realistic investigation as well as his understanding of the desired outcome of the project, in other words, the individual’s ideology and their level of fairness.Keywords: factors influencing project selection, public sector construction project selection, projects portfolio selection, strategic decision-making
Procedia PDF Downloads 3287823 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 697822 One-Step Time Series Predictions with Recurrent Neural Networks
Authors: Vaidehi Iyer, Konstantin Borozdin
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning
Procedia PDF Downloads 2287821 Practices in Planning, Design and Construction of Head Race Tunnel of a Hydroelectric Project
Authors: M. S. Thakur, Mohit Shukla
Abstract:
A channel/tunnel, which carries the water to the penstock/pressure shaft is called headrace tunnel (HRT). It is necessary to know the general topography, geology of the area, state of stress and other mechanical properties of the strata. For this certain topographical and geological investigations, in-situ and laboratory tests, and observations are required to be done. These investigations play an important role in a tunnel design as these help in deciding the optimum layout, shape and size and support requirements of the tunnel. The paper includes inputs from Nathpa Jhakri Hydeoelectric project which is India’s highest capacity (1500 MW) operating hydroelectric project. The paper would help the design engineers with various new concepts and preparedness against geological surprises.Keywords: tunnelling, geology, HRT, rockmass
Procedia PDF Downloads 2557820 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: dexel, process stability, material removal, milling
Procedia PDF Downloads 5257819 Grey Prediction of Atmospheric Pollutants in Shanghai Based on GM(1,1) Model Group
Authors: Diqin Qi, Jiaming Li, Siman Li
Abstract:
Based on the use of the three-point smoothing method for selectively processing original data columns, this paper establishes a group of grey GM(1,1) models to predict the concentration ranges of four major air pollutants in Shanghai from 2023 to 2024. The results indicate that PM₁₀, SO₂, and NO₂ maintain the national Grade I standards, while the concentration of PM₂.₅ has decreased but still remains within the national Grade II standards. Combining the forecast results, recommendations are provided for the Shanghai municipal government's efforts in air pollution prevention and control.Keywords: atmospheric pollutant prediction, Grey GM(1, 1), model group, three-point smoothing method
Procedia PDF Downloads 357818 An Alternative to Resolve Land use Conflicts: the Rétköz Lake Project
Authors: Balázs Kulcsár
Abstract:
Today, there is no part of the world that does not bear the mark of man in some way. This process seems unstoppable. So perhaps the best thing we can do is to touch that handprint gently and with the utmost care. There are multiple uses for the same piece of land, the coordination of which requires careful and sustainable spatial planning. The case study of the Rétközlake in north-eastern Hungary illustrates a habitat rehabilitation project in which a number of human uses were coordinated with the conservation and restoration of the natural environment. Today, the good condition of the habitat can only be maintained artificially, but the project has paid particular attention to finding a sustainable solution. The rehabilitation of Lake Rétköz is considered good practice in resolving land-use conflicts.Keywords: sustainability, ecosystem service, land use conflict, landscape utilization
Procedia PDF Downloads 1677817 Possibilities of Output Technology the Project ADAPTIV for Use in Infrared Camouflage
Authors: Jiří Barta, Teodor Baláž, Tomáš Ludík, Jiří. F. Urbánek
Abstract:
This article deals with the outputs of project acronym ADAPTIV of Czech Defence Research Project. This Project solved tends to adaptive camouflage. The camouflage is concealment by means of disguise. Perceptive interface between recipient and camouflaged object is visualized by means of textile modular screens. Screens special light semi-permeability enables front/ back projection with nearly identical light parameters. Information permeability, towards illusion creation, must be controlled by the camouflage provider by means sophisticated and mastered illusion with perfect scenarios. The project ADAPTIV was primarily funded with the maximum possible use of COTS (Commercial-Off-The-Shelf) principle asks special definition of feasibility conditions, especially recipient space position. This paper deals with uses the ADAPTIV output with name DATAsam with modification for infrared camouflage. It is focused on active camouflage in infrared spectrum of emissivity at <8;14> μm for laboratory conditions. The main chapter provides basic experiments and testing physical properties needed for camouflage in infrared environment. The evaluation experiments revealed the possibility of use case in various types of camouflage.Keywords: camouflage, ADAPTIV, infrared camouflage, computer-aided, COTS
Procedia PDF Downloads 4177816 Assessing Project Performance through Work Sampling and Earned Value Analysis
Authors: Shobha Ramalingam
Abstract:
The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.Keywords: earned value analysis, time performance, project costs, project delays, construction productivity
Procedia PDF Downloads 977815 A Computational Analysis of Flow and Acoustics around a Car Wing Mirror
Authors: Aidan J. Bowes, Reaz Hasan
Abstract:
The automotive industry is continually aiming to develop the aerodynamics of car body design. This may be for a variety of beneficial reasons such as to increase speed or fuel efficiency by reducing drag. However recently there has been a greater amount of focus on wind noise produced while driving. Designers in this industry seek a combination of both simplicity of approach and overall effectiveness. This combined with the growing availability of commercial CFD (Computational Fluid Dynamics) packages is likely to lead to an increase in the use of RANS (Reynolds Averaged Navier-Stokes) based CFD methods. This is due to these methods often being simpler than other CFD methods, having a lower demand on time and computing power. In this investigation the effectiveness of turbulent flow and acoustic noise prediction using RANS based methods has been assessed for different wing mirror geometries. Three different RANS based models were used, standard k-ε, realizable k-ε and k-ω SST. The merits and limitations of these methods are then discussed, by comparing with both experimental and numerical results found in literature. In general, flow prediction is fairly comparable to more complex LES (Large Eddy Simulation) based methods; in particular for the k-ω SST model. However acoustic noise prediction still leaves opportunities for more improvement using RANS based methods.Keywords: acoustics, aerodynamics, RANS models, turbulent flow
Procedia PDF Downloads 4467814 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 3567813 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 1537812 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 125