Search results for: predictive modlleing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1015

Search results for: predictive modlleing

445 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter

Procedia PDF Downloads 53
444 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 197
443 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372
442 Digital Wellbeing: A Multinational Study and Global Index

Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid

Abstract:

Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.

Keywords: technology, health, behavioral addiction, digital wellbeing

Procedia PDF Downloads 79
441 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
440 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites

Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu

Abstract:

The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.

Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation

Procedia PDF Downloads 72
439 The Predictive Value of Extensor Grip Test for the Effectiveness of Treatment for Tennis Elbow: A Randomized Controlled Trial

Authors: Mohammad Javad Zehtab, S. Alireza Mirghasemi, Ali Majlesara, Parvin Tajik, Babak Siavashi

Abstract:

Objective: There are different modalities proposed for tennis elbow treatment with few randomized trials comparing them. We designed a study to compare the effectiveness of five different modalities and determine the usefulness of recently proposed extensor grip test (EGT) in predicting the response to treatment. Methods: In a randomized controlled clinical trial 92 of 98 tennis elbow patients in Sina hospital of Tehran, Iran between 2006 and 2007 fulfill trial entry criteria, among these patients 56 (60.9%) had positive EGT result. Stratified on EGT result, patients allocated randomly to 5 treatment groups: Brace (B) group, physiotherapy (P), brace + physiotherapy (BP), injection (I) and injection + physiotherapy (IP). Results: Patients who had positive result of EGT had better response to treatments: less SOC (p = 0.06), less PFFQ and patients’ satisfaction scores (p < 0.001). Among the treatment IP was the most successful, then BP, P and B, respectively; injection was the worst treatment modality. Response to treatment was comparable in all groups between EGT positive and negative patients except bracing; in which positive EGT was correlated with a dramatic response to treatment. Conclusion: In all patients IP and then BP is recommended but in EGT negatives, bracing seems to be of no use. Injection alone is not recommended in either group.

Keywords: tennis elbow, extensor grip test, physiotherapy, tennis elbow treatment

Procedia PDF Downloads 284
438 Drivers of Energy Saving Behaviour: The Relative Influence of Normative, Habitual, Intentional, and Situational Processes

Authors: Karlijn Van Den Broek, Ian Walker, Christian Klöckner

Abstract:

Campaigns aiming to induce energy-saving behaviour among householders use a wide range of approaches that address many different drivers thought to underpin this behaviour. However, little research has compared the relative importance of the different factors that influence energy behaviour, meaning campaigns are not informed about where best to focus resources. Therefore, this study applies the Comprehensive Action Determination Model (CADM) to compare the role of normative, intentional, habitual, and situational processes on energy-saving behaviour. An online survey on a sample of households (N = 247) measured the CADM variables and the data was analysed using structural equation modelling. Results showed that situational and habitual processes were best able to account for energy saving behaviour while normative and intentional processes had little predictive power. These findings suggest that policymakers should move away from motivating householders to save energy and should instead focus their efforts on changing energy habits and creating environments that facilitate energy saving behaviour. These findings add to the wider development in social and environmental psychology that emphasizes the importance of extra-personal variables such as the physical environment in shaping behaviour.

Keywords: energy consumption, behavioural modelling, environmental psychology theory, habits, values

Procedia PDF Downloads 257
437 How Unicode Glyphs Revolutionized the Way We Communicate

Authors: Levi Corallo

Abstract:

Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.

Keywords: unicode, text symbols, emojis, glyphs, communication

Procedia PDF Downloads 194
436 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
435 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 293
434 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
433 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 242
432 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 144
431 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis

Authors: Florge Francis A. Sy

Abstract:

Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.

Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width

Procedia PDF Downloads 123
430 Self-Efficacy, Self-Knowledge, Empathy and Psychological Well-Being as Predictors of Workers’ Job Performance in Food and Beverage Industries in the South-West, Nigeria

Authors: Michael Ayodeji Boyede

Abstract:

Studies have shown that workers’ job performance is very low in Nigeria, especially in the food and beverage industry. This trend had been partially attributed to low workers’ self-efficacy, poor self-knowledge, lack of empathy and poor psychological well-being. The descriptive survey design was adopted. Four factories were purposively selected from three states in Southwestern, Nigeria (Lagos, Ogun and Oyo States). Proportionate random sampling techniques were used in selecting 1,820 junior and supervisory cadre workers in Nestle Plc (369), Coca-Cola Plc (392), Cadbury Plc (443) and Nigeria Breweries (616). The five research instruments used were: Workers’ self-efficacy (r=0.81), Workers’ self-knowledge (r=0.78), Workers’ empathy (r=0.74), Workers’ psychological well-being (r=0.70) and Workers’ performance rating (r=0.72) scales. Quantitative data were analysed using Pearson product moment correlation, Multiple regression at 0.05 level of significance. Findings show that there were significant relationships between Workers’ job performance and self-efficacy (r=.56), self-knowledge (r=.54), Empathy (r=.55) and Psychological Well-being (r=.69) respectively. Self-efficacy, self-knowledge, empathy and psychological well-being jointly predict workers’ job performance (F (4,1815) = 491.05) accounting for 52.0% of its variance. Psychological well-being (B=.52). Self-efficacy (B=.10), self-knowledge (B=.11), empathy (B=. 09) had predictive relative weights on workers’ job performance. Inadequate knowledge and training of the supervisors led to a mismatch of workers thereby reducing workers’ job performance. High self-efficacy, empathy, psychological well-being and good self-knowledge influence workers job performance in the food and beverage industry. Based on the finding employers of labour should provide work environment that would enhance and promote the development of these factors among the workers.

Keywords: self-efficacy, self-knowledge, empathy, psychological well-being, job performance

Procedia PDF Downloads 262
429 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 119
428 Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria

Authors: Okoh Charity N.

Abstract:

This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools.

Keywords: preschooler, social learning, indoor activities, outdoor activities

Procedia PDF Downloads 130
427 The Mobilizing Role of Moral Obligation and Collective Action Frames in Two Types of Protest

Authors: Monica Alzate, Marcos Dono, Jose Manuel Sabucedo

Abstract:

As long as collective action and its predictors constitute a big body of work in the field of political psychology, context-dependent studies and moral variables are a relatively new issue. The main goal of this presentation is to examine the differences in the predictors of collective action when taking into account two different types of protest, and also focus on the role of moral obligation as a predictor of collective action. To do so, we sampled both protesters and non-protesters from two mobilizations (N=376; N=563) of different nature (catalan Independence, and an 'indignados' march) and performed a logistic regression and a 2x2 MANOVA analysis. Results showed that the predictive variables that were more discriminative between protesters and non-protesters were identity, injustice, efficacy and moral obligation for the catalan Diada and injustice and moral obligation for the 'indignados'. Also while the catalans scored higher in the identification and efficacy variables, the indignados did so in injustice and moral obligation. Differences are evidenced between two types of collective action that coexist within the same protest cycle. The frames of injustice and moral obligation gain strength in the post-2010 mobilizations, a fact probably associated with the combination of materialist and post-materialist values that distinguish the movement. All of this emphasizes the need of studying protest from a contextual point of view. Besides, moral obligation emerges as key predictor of collective action engagement.

Keywords: collective action, identity, moral obligation, protest

Procedia PDF Downloads 332
426 Prototyping the Problem Oriented Medical Record for Connected Health Based on TypeGraphQL

Authors: Sabah Mohammed, Jinan Fiaidhi, Darien Sawyer

Abstract:

Data integration of health through connected services can save lives in the event of a medical emergency or provide efficient and effective interventions for the benefit of the patients through the integration of bedside and bench side clinical research. Such integration will support all wind of change in healthcare by being predictive, pre-emptive, personalized, problem-oriented and participatory. Prototyping a healthcare system that enables data integration has been a big challenge for healthcare for a long time. However, an innovative solution started to emerge by focusing on problem lists where everything can connect the problem list forming a growing graph. This notion was introduced by Dr. Lawrence Weed in early 70’s, but the enabling technologies weren’t mature enough to provide a successful implementation prototype. In this article, we are describing our efforts in prototyping Dr. Lawrence Weed's problem-oriented medical record (POMR) and his patient case schema (SOAP) to shape a prototype for connected health. For this, we are using the TypeGraphQL API and our enterprise-based QL4POMR to describe a Web-Based gateway for healthcare services connectivity. Our prototype has reported success in connecting to the HL7 FHIR medical record and the OpenTarget biomedical repositories.

Keywords: connected health, problem-oriented healthcare record, SOAP, QL4POMR, typegraphQL

Procedia PDF Downloads 97
425 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 50
424 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home

Authors: Auwal Mustapha Imam

Abstract:

The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.

Keywords: flyback, converter, DC-DC, photovoltaic, SIMO

Procedia PDF Downloads 49
423 Prevalence of Thyroid Disorders in Pregnancy in Northern Algeria

Authors: Samira Akdader-Oudahmane, Assia Kamel, Lynda Lakabi, Michael Bruce Zimmermann, Zohra Hamouli-Said, Djamila Meskine

Abstract:

Background: Iodine is a trace element whose adequate intakes are essential during pregnancy to promote the correct growth and development of the fetus. Iodine deficiency is the cause of several disorders in foetal development, and thyroid disorders during pregnancy are associated with an increased risk of miscarriage or premature birth. The aim of this study was to assess the iodine status and thyroid function of pregnant women (PW) in northern Algeria. Methods: Healthy PW were recruited from an urban area (Algiers). Spot urine and venous blood samples were collected to assess iodine status (urinary iodine concentration, UIC) and serum thyroid hormones (TSH, FT4), and anti-thyroid peroxidase antibodies (TPO-Ab) concentrations. Results: The median UIC for the PW (n=172) in Algiers was 246,74µg/L, 244,68 µg/L, and 220,63µg/L, respectively, during the first, second, and third trimesters of pregnancy. Mean TSH and FT4 concentrations were within reference ranges in all groups of women. Among PW, 72.7%, 75.4%, and 75.5% in the first, second and third trimester were TPO-Ab+. Among PW, 14%, 10%, and 10% in the first, second and third trimester, respectively, with TPO -Ab+ had subclinical hypothyroidism. An analysis of the variations in the levels of the serum parameters (FT4, TSH and anti-TPO antibodies) was analyzed according to the UIC intervals admitted and show that these marker are predictive of thyroid function. Conclusion: In northern Algeria, median UICs indicate iodine sufficiency in PW. About 75% of PW are TPO-Ab+ and the prevalence of subclinical hypothyroidism is high.

Keywords: thyroid, pregnant woman, urinary iodine, subclinical hypothyroidism

Procedia PDF Downloads 79
422 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression

Authors: Issam Aouari, Abdelmalek Abdelhamid

Abstract:

For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.

Keywords: duration, earthquake, prediction, regression, soft soil

Procedia PDF Downloads 153
421 Biopsy or Biomarkers: Which Is the Sample of Choice in Assessment of Liver Fibrosis?

Authors: S. H. Atef, N. H. Mahmoud, S. Abdrahman, A. Fattoh

Abstract:

Background: The aim of the study is to assess the diagnostic value of fibrotest and hyaluronic acid in discriminate between insignificant and significant fibrosis. Also, to find out if these parameters could replace liver biopsy which is currently used for selection of chronic hepatitis C patients eligible for antiviral therapy. Study design: This study was conducted on 52 patients with HCV RNA detected by polymerase chain reaction (PCR) who had undergone liver biopsy and attending the internal medicine clinic at Ain Shams University Hospital. Liver fibrosis was evaluated according to the METAVIR scoring system on a scale of F0 to F4. Biochemical markers assessed were: alpha-2 macroglobulin (α2-MG), apolipoprotein A1 (Apo-A1), haptoglobin, gamma-glutamyl transferase (GGT), total bilirubin (TB) and hyaluronic acid (HA). The fibrotest score was computed after adjusting for age and gender. Predictive values and ROC curves were used to assess the accuracy of fibrotest and HA results. Results: For fibrotest, the observed area under curve for the discrimination between minimal or no fibrosis (F0-F1) and significant fibrosis (F2-F4) was 0.6736 for cutoff value 0.19 with sensitivity of 84.2% and specificity of 85.7%. For HA, the sensitivity was 89.5% and specificity was 85.7% and area under curve was 0.540 at the best cutoff value 71 mg/dL. Multi-use of both parameters, HA at 71 mg/dL with fibrotest score at 0.22 give a sensitivity 89.5%, specificity 100 and efficacy 92.3% (AUC 0.895). Conclusion: The use of both fibrotest score and HA could be as alternative to biopsy in most patients with chronic hepaitis C putting in consideration some limitations of the proposed markers in evaluating liver fibrosis.

Keywords: fibrotest, liver fibrosis, HCV RNA, biochemical markers

Procedia PDF Downloads 287
420 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 74
419 Langerian Mindfulness and School Manager’s Competencies: A Comprehensive Model in Khorasan Razavi Educational Province

Authors: Reza Taherian, Naziasadat Naseri, Elham Fariborzi, Faride Hashmiannejad

Abstract:

Effective management plays a crucial role in the success of educational institutions and training organizations. This study aims to develop and validate a professional competency model for managers in the education and training sector of Khorasan Razavi Province using a mindfulness approach based on Langerian theory. Employing a mixed exploratory design, the research involved qualitative data collection from experts and top national and provincial managers, as well as quantitative data collection using a researcher-developed questionnaire. The findings revealed that 81% of the competency of education and training managers is influenced by the dimensions of Langerian mindfulness, including engagement, seeking, producing, and flexibility. These dimensions were found to be predictive of the competencies of education and training managers, which encompass specialized knowledge, professional skills, pedagogical knowledge, commitment to Islamic values, personal characteristics, and creativity. This research provides valuable insights into the essential role of mindfulness in shaping the competencies of education and training managers, shedding light on the specific dimensions that significantly contribute to managerial success in Khorasan Razavi province.

Keywords: school managers, school manager’s competencies, mindfulness, Langerian mindfulness

Procedia PDF Downloads 54
418 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs

Authors: Sadia Munir

Abstract:

Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.

Keywords: activin, biomarkers, growth factors, miroRNA

Procedia PDF Downloads 442
417 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 170
416 Seismic Performance of Various Grades of Steel Columns through Finite Element Analysis

Authors: Asal Pournaghshband, Roham Maher

Abstract:

This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions.

Keywords: energy dissipation, finite element analysis, H-shaped columns, seismic performance, stainless steel grades

Procedia PDF Downloads 24