Search results for: optimized techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8139

Search results for: optimized techniques

7569 Extraction of Squalene from Lebanese Olive Oil

Authors: Henri El Zakhem, Christina Romanos, Charlie Bakhos, Hassan Chahal, Jessica Koura

Abstract:

Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil.

Keywords: squalene, extraction, crystallization, Soxhlet

Procedia PDF Downloads 519
7568 Constructability Driven Engineering in Oil and Gas Projects

Authors: Srikanth Nagarajan, P. Parthasarathy, Frits Lagers

Abstract:

Lower crude oil prices increased the pressure on oil and gas projects. Being competitive becomes very important and critical for the success in any industry. Increase in size of the project multiplies the magnitude of the issue. Timely completion of projects within the budget and schedule is very important for any project to succeed. A simple idea makes a larger impact on the total cost of the plant. In this robust world, the phases of engineering right from licensing technology, feed, different phases of detail engineering, procurement and construction has been so much compressed that they overlap with each other. Hence constructability techniques have become very important. Here in this paper, the focus will be on how these techniques can be implemented and reduce cost with the help of a case study. Constructability is a process driven by the need to impact project’s construction phase resulting in improved project delivery, costs and schedule. In construction phase of one of our fast-track mega project, it was noticed that there was an opportunity to reduce significant amount of cost and schedule by implementing Constructability study processes. In this case study, the actual methodology adopted during engineering and construction and the way for doing it better by implementing Constructability techniques with collaborative engineering efforts will be explained.

Keywords: being competitive, collaborative engineering, constructability, cost reduction

Procedia PDF Downloads 421
7567 The Interdisciplinary Synergy Between Computer Engineering and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.

Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization

Procedia PDF Downloads 14
7566 Translation and Legal Terminology: Techniques for Coping with the Untranslatability of Legal Terms between Arabic and English

Authors: Rafat Alwazna

Abstract:

Technical lexicon is witnessing a large upsurge in the use of new terminologies whose emergence is an inevitable result of the spread of high-quality technology, the existence of scientific paradigms and the fast growth of research in different disciplines. One important subfield of terminology is legal terminology, which forms a crucial part of legal studies, and whose translation from one legal system into another is deemed a formidable and arduous task that needs to be properly performed by legal translators. Indeed, the issue of untranslatability of legal terms, particularly between originally unrelated languages, like legal Arabic and legal English, has long been a real challenge in legal translation. It stems from the conceptual incongruency between legal terms of different legal languages, which are derived from different legal cultures and legal systems. Such conceptual asymmetry is owing to the fact that law has no universal reference and that legal language is what determines the degree of difference in conceptual correspondence. The present paper argues that although conceptual asymmetry, which is the main reason for the issue of untranslatability of legal terms, cannot be denied in legal translation, there exist certain translation techniques which, if properly adopted, would resolve the issue of untranslatability of legal terms and therefore achieve acceptable legal translation. Hence, the question of untranslatability of legal terms should no longer exist within the context of legal translation.

Keywords: conceptual incongruency, Legal terms, translation techniques, untranslatability

Procedia PDF Downloads 197
7565 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
7564 Impact of aSolar System Designed to Improve the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

The improvement of the agricultural production and food preservation processes requires the introduction of heating and cooling techniques in greenhouses. To develop these techniques, our work proposes a design of an integrated and autonomous solar system for heating, cooling, and production conservation in greenhouses. The hot air produced by the greenhouse effect during the day will be evacuated to compartments annexed in the greenhouse to dry the surplus agricultural production that is not sold on the market. In this paper, we will give a description of this solar system and the calculation of the fluid’s volume used for heat storage that will be released during the night.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 106
7563 Unlocking the Potential of Short Texts with Semantic Enrichment, Disambiguation Techniques, and Context Fusion

Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui

Abstract:

This paper explores the potential of short texts through semantic enrichment and disambiguation techniques. By employing context fusion, we aim to enhance the comprehension and utility of concise textual information. The methodologies utilized are grounded in recent advancements in natural language processing, which allow for a deeper understanding of semantics within limited text formats. Specifically, topic classification is employed to understand the context of the sentence and assess the relevance of added expressions. Additionally, word sense disambiguation is used to clarify unclear words, replacing them with more precise terms. The implications of this research extend to various applications, including information retrieval and knowledge representation. Ultimately, this work highlights the importance of refining short text processing techniques to unlock their full potential in real-world applications.

Keywords: information traffic, text summarization, word-sense disambiguation, semantic enrichment, ambiguity resolution, short text enhancement, information retrieval, contextual understanding, natural language processing, ambiguity

Procedia PDF Downloads 8
7562 A Fast, Reliable Technique for Face Recognition Based on Hidden Markov Model

Authors: Sameh Abaza, Mohamed Ibrahim, Tarek Mahmoud

Abstract:

Due to the development in the digital image processing, its wide use in many applications such as medical, security, and others, the need for more accurate techniques that are reliable, fast and robust is vehemently demanded. In the field of security, in particular, speed is of the essence. In this paper, a pattern recognition technique that is based on the use of Hidden Markov Model (HMM), K-means and the Sobel operator method is developed. The proposed technique is proved to be fast with respect to some other techniques that are investigated for comparison. Moreover, it shows its capability of recognizing the normal face (center part) as well as face boundary.

Keywords: HMM, K-Means, Sobel, accuracy, face recognition

Procedia PDF Downloads 331
7561 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 574
7560 Effects of Tillage and Poultry Manure on Soil Properties and Yam Performance on Alfisol in Southwest Nigeria

Authors: Adeleye Ebenezer Omotayo

Abstract:

The main effects of tillage, poultry manure and interaction effects of tillage-poultry manure combinations on soil characteristics and yam yield were investigated in a factorial experiment involving four tillage techniques namely (ploughing (p), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and poultry manure at two levels 0 t ha-1 and 10 t ha-1 arranged in split-plot design. Data obtained were subjected to analysis of variance using Statistical Analysis System (SAS) Institute Package. Soil moisture content, bulk density and total porosity were significantly (p>0.05) influenced by soil tillage techniques. Manually heaped and ridged plots had the lowest soil bulk density, moisture content and highest total porosity. The soil total N, exchangeable Mg, k, base saturation and CEC were better enhanced in manually tilled plots. Soil nutrients status declined at the end of the second cropping for all the tillage techniques in the order PH>P>MH>MR. Yam tuber yields were better enhanced in manually tilled plots than mechanically tilled plots. Poultry manure application reduced soil bulk density, temperature, increased total porosity and soil moisture content. It also improved soil organic matter, total N, available P, exchangeable Mg, Ca, K and lowered exchange acidity. It also increased yam tuber yield significantly. Tillage techniques plots amended with poultry manure enhanced yam tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that yam production on alfisol in Southwest Nigeria requires loose soil structure for tuber development and that the use of poultry manure in combination with tillage is recommended as it will ensure stability of soil structure, improve soil organic matter status, nutrient availability and high yam tuber yield. Also, it will help to reduce the possible deleterious effects of tillage on soil properties and yam performance.

Keywords: ploughing, poultry manure, yam, yield

Procedia PDF Downloads 269
7559 Multi-Class Text Classification Using Ensembles of Classifiers

Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari

Abstract:

Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.

Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost

Procedia PDF Downloads 232
7558 Helping the Development of Public Policies with Knowledge of Criminal Data

Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno

Abstract:

The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.

Keywords: social data analysis, criminal records, computational techniques, data mining, big data

Procedia PDF Downloads 84
7557 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science

Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier

Abstract:

Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared

Keywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis

Procedia PDF Downloads 117
7556 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor

Authors: Gajanan M. Sonwane

Abstract:

Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.

Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine

Procedia PDF Downloads 116
7555 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft

Authors: Arun Prasath Subramanian

Abstract:

The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.

Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling

Procedia PDF Downloads 319
7554 Biosafety Study of Genetically Modified CEMB Sugarcane on Animals for Glyphosate Tolerance

Authors: Aminah Salim, Idrees Ahmed Nasir, Abdul Qayyum Rao, Muhammad Ali, Muhammad Sohail Anjum, Ayesha Hameed, Bushra Tabassum, Anwar Khan, Arfan Ali, Mariyam Zameer, Tayyab Husnain

Abstract:

Risk assessment of transgenic herbicide tolerant sugarcane having CEMB codon optimized cp4EPSPS gene was done in present study. Fifteen days old chicks taken from K&Ns Company were randomly assorted into four groups with eight chicks in each group namely control chicken group fed with commercial diet, non-transgenic group fed with non-experimental sugarcane and transgenic group fed with transgenic sugarcane with minimum and maximum level. Body weights, biochemical analysis for Urea, alkaline phosphatase, alanine transferase, aspartate transferase, creatinine and bilirubin determination and histological examination of chicks fed with four types of feed was taken at fifteen days interval and no significant difference was observed in body weight biochemical and histological studies of all four groups. Protein isolated from the serum sample was analyzed through dipstick and SDS-PAGE, showing the absence of transgene protein in the serum sample of control and experimental groups. Moreover the amplification of cp4EPSPS gene with gene specific primers of DNA isolated from chicks blood and also from commercial diet was done to determine the presence and mobility of any nucleotide fragment of the transgene in/from feed and no amplification was obtained in feed as well as in blood extracted DNA of any group. Also no mRNA expression of cp4EPSPS gene was obtained in any tissue of four groups of chicks. From the results it is clear that there is no deleterious or harmful effect of the CEMB codon optimized transgenic cp4EPSPS sugarcane on the chicks health.

Keywords: chicks, cp4EPSPS, glyphosate, sugarcane

Procedia PDF Downloads 372
7553 Patient-Specific Design Optimization of Cardiovascular Grafts

Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw

Abstract:

Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.

Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering

Procedia PDF Downloads 242
7552 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 320
7551 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection

Procedia PDF Downloads 247
7550 Approaching a Tat-Rev Independent HIV-1 Clone towards a Model for Research

Authors: Walter Vera-Ortega, Idoia Busnadiego, Sam J. Wilson

Abstract:

Introduction: Human Immunodeficiency Virus type 1 (HIV-1) is responsible for the acquired immunodeficiency syndrome (AIDS), a leading cause of death worldwide infecting millions of people each year. Despite intensive research in vaccine development, therapies against HIV-1 infection are not curative, and the huge genetic variability of HIV-1 challenges to drug development. Current animal models for HIV-1 research present important limitations, impairing the progress of in vivo approaches. Macaques require a CD8+ depletion to progress to AIDS, and the maintenance cost is high. Mice are a cheaper alternative but need to be 'humanized,' and breeding is not possible. The development of an HIV-1 clone able to replicate in mice is a challenging proposal. The lack of human co-factors in mice impedes the function of the HIV-1 accessory proteins, Tat and Rev, hampering HIV-1 replication. However, Tat and Rev function can be replaced by constitutive/chimeric promoters, codon-optimized proteins and the constitutive transport element (CTE), generating a novel HIV-1 clone able to replicate in mice without disrupting the amino acid sequence of the virus. By minimally manipulating the genomic 'identity' of the virus, we propose the generation of an HIV-1 clone able to replicate in mice to assist in antiviral drug development. Methods: i) Plasmid construction: The chimeric promoters and CTE copies were cloned by PCR using lentiviral vectors as templates (pCGSW and pSIV-MPCG). Tat mutants were generated from replication competent HIV-1 plasmids (NHG and NL4-3). ii) Infectivity assays: Retroviral vectors were generated by transfection of human 293T cells and murine NIH 3T3 cells. Virus titre was determined by flow cytometry measuring GFP expression. Human B-cells (AA-2) and Hela cells (TZMbl) were used for infectivity assays. iii) Protein analysis: Tat protein expression was determined by TZMbl assay and HIV-1 capsid by western blot. Results: We have determined that NIH 3T3 cells are able to generate HIV-1 particles. However, they are not infectious, and further analysis needs to be performed. Codon-optimized HIV-1 constructs are efficiently made in 293T cells in a Tat and Rev independent manner and capable of packaging a competent genome in trans. CSGW is capable of generating infectious particles in the absence of Tat and Rev in human cells when 4 copies of the CTE are placed preceding the 3’LTR. HIV-1 Tat mutant clones encoding different promoters are functional during the first cycle of replication when Tat is added in trans. Conclusion: Our findings suggest that the development of an HIV-1 Tat-Rev independent clone is challenging but achievable aim. However, further investigations need to be developed prior presenting our HIV-1 clone as a candidate model for research.

Keywords: codon-optimized, constitutive transport element, HIV-1, long terminal repeats, research model

Procedia PDF Downloads 308
7549 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 63
7548 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 422
7547 The Development and Provision of a Knowledge Management Ecosystem, Optimized for Genomics

Authors: Matthew I. Bellgard

Abstract:

The field of bioinformatics has made, and continues to make, substantial progress and contributions to life science research and development. However, this paper contends that a systems approach integrates bioinformatics activities for any project in a defined manner. The application of critical control points in this bioinformatics systems approach may be useful to identify and evaluate points in a pathway where specified activity risk can be reduced, monitored and quality enhanced.

Keywords: bioinformatics, food security, personalized medicine, systems approach

Procedia PDF Downloads 422
7546 Restoring, Revitalizing and Recovering Brazilian Rivers: Application of the Concept to Small Basins in the City of São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

Watercourses in Brazilian urban areas are constantly being degraded due to the unplanned use of the urban space; however, due to the different contexts of land use and occupation in the river watersheds, different intervention strategies are required to requalify them. When it comes to requalifying watercourses, we can list three main techniques to fulfill this purpose: restoration, revitalization and recovery; each one being indicated for specific contexts of land use and occupation in the basin. In this study, it was demonstrated that the application of these three techniques to three small basins in São Paulo city, listing the aspects involved in each of the contexts and techniques of requalification. For a protected watercourse within a forest park, renaturalization was proposed, where the watercourse is preserved in a state closer to the natural one. For a watercourse in an urban context that still preserves open spaces for its maintenance as a landscape element, an intervention was proposed following the principles of revitalization, integrating the watercourse with the landscape and the population. In the case of a watercourse in a harder context, only recovery was proposed, since the watercourse is found under the road system, which makes it difficult to integrate it into the landscape.

Keywords: sustainable drainage, river restoration, river revitalization, river recovery

Procedia PDF Downloads 156
7545 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab

Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien

Abstract:

The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.

Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation

Procedia PDF Downloads 197
7544 Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency

Authors: Aydin Azizi, Abdurrahman Tanira

Abstract:

With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel.

Keywords: fuel efficiency, driving techniques, optimum speed, optimizing fuel consumption

Procedia PDF Downloads 460
7543 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 143
7542 Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, A. Elazim Negm

Abstract:

Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: green architecture/building, technologies, optimization, strategies, fuzzy techniques, models

Procedia PDF Downloads 475
7541 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
7540 Identifying the Level of Awareness on Value Management Practice amongst Construction Practitioners in Nigeria

Authors: Alhassan Dahiru

Abstract:

Value management is widely accepted technique of eliminating unnecessary cost at different stages of project development that maximizes the functional value of a project by managing its evolution and development from concept to completion. Many construction industry practitioners are not aware of Value Management practice, and its use is less widespread in Nigeria. The aim of this research is to identify the level of awareness on value management practice amongst construction practitioners with a view to contribute to the improvement of the implementation of value management practice in the Nigerian construction industry. In this study, construction practitioners have been chosen as respondents from the 6 geopolitical zones of the federation including FCT Abuja. Through the survey, a total number of 360 semi-structured questionnaires were administered and 284 were returned and remained good for the analysis. The results indicate that most of the respondents were aware of the value management concept and issues surrounding construction industry in Nigeria, while about 32% of the respondents were not aware of its potential benefits. Therefore, organisations should review their techniques and processes from time to time for improvement on effective service delivery. Additionally, a change management strategy should also be part of every organization to ease the introduction of new techniques such as value management. There is also the need for more value management training workshops and seminars in order to enlighten the participants of the construction industry on the principles, concept, and techniques involved in the value management process.

Keywords: sustainability, value management, construction practitioners, Nigeria

Procedia PDF Downloads 231