Search results for: online range monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11859

Search results for: online range monitoring

11289 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications

Authors: Hatim Laalej, Jon Stammers

Abstract:

In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.

Keywords: machining, manufacturing, tool wear, signal processing

Procedia PDF Downloads 248
11288 Effects of Auditory Brainstem Response (ABR) on Measuring Children’s Auditory Functions: An Experimental Investigation

Authors: Sadeq Al Yaari, Nassr Almaflehi, Ayman Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari

Abstract:

Background: Measuring hearing functional capabilities by Auditory Brainstem Responses (ABR) may contribute to better treatment and possible differences in this process may have important clinical implications. Objectives: To measure the validity and reliability of ABR through screening, estimating, and intraoperative monitoring of auditory capabilities of Arab infants and children and the degree of their seriousness. Design: Pre-and-posttest was administered to measure the validity and reliability of ABR. Participants: The subjects of the present study are sixty (60) individuals. The study classified them into two groups: Infants (N=30, ages range between 0-40 weeks) and children (N=30, ages range between 10 months and -3 years) diagnosed with auditory problems. Procedures: The ABR pre- and posttest measurement was administered over two weeks. The outcomes were neuropsycholinguistically and statistically analyzed. Results: The results of the pre-and-posttest for both infants and children did not vary significantly. Also consistent with expectations, higher scores were not registered for the infants’ measurements due to age factors. The findings from this study largely indicate that ABR is valid and reliable.

Keywords: auditory, brainstem, response, children, measurement, function, experimental study

Procedia PDF Downloads 58
11287 A Digital Filter for Symmetrical Components Identification

Authors: Khaled M. El-Naggar

Abstract:

This paper presents a fast and efficient technique for monitoring and supervising power system disturbances generated due to dynamic performance of power systems or faults. Monitoring power system quantities involve monitoring fundamental voltage, current magnitudes, and their frequencies as well as their negative and zero sequence components under different operating conditions. The proposed technique is based on simulated annealing optimization technique (SA). The method uses digital set of measurements for the voltage or current waveforms at power system bus to perform the estimation process digitally. The algorithm is tested using different simulated data to monitor the symmetrical components of power system waveforms. Different study cases are considered in this work. Effects of number of samples, sampling frequency and the sample window size are studied. Results are reported and discussed.

Keywords: estimation, faults, measurement, symmetrical components

Procedia PDF Downloads 469
11286 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 497
11285 A Review on Pathological Gaming among Adolescents

Authors: Anjali Malik

Abstract:

This paper presents a review of the literature on behavioral addictions with a particular focus on understanding online gaming habits among adolescents. Extant researches yielded many different sets of antecedent factors for developing pathological online gaming behavior. This paper draws findings from the most-cited publications most closely associated with factors explaining why individuals develop such kind of problematic behavior. What emerges as central to understanding this phenomenon is the presence of multiple variable causes that take into account the individual, the environment and their interaction to explain the risk behavior such as pathological online gaming. In addition to that role of some mediating factors and pull factors has also been discussed, along with the consequences on personal, social and academic performance resulting from such kind of addictive behavior. The paper also makes recommendations for future research including developing a deeper understanding of the phenomena studied here by examining the relative contribution of these multiple-risk contexts.

Keywords: pathological gaming, gaming addiction, adolescents, behavior

Procedia PDF Downloads 234
11284 Antecedents of Online Trust Towards E-Retailers for Repeat Buyers: An Empirical Study in Indian Context

Authors: Prageet Aeron, Shilpi Jain

Abstract:

The present work explores the trust building mechanisms in the context of e-commerce vendors and reconciles trust as a cognitive as well as a knowledge-based mechanism in the framework which is developed. The paper conducts an empirical examination of the variables integrity, benevolence, and ability with trust as the dependent variable and propensity to trust as the mediating variable. Authors establish ability and integrity as primary antecedents as well as establish the central role of trust propensity in the online context for Indian buyers. Authors further identify that benevolence in the context of Indian buyers online behaviour seems insignificant, and this seems counter-intutive given the role of discounts in the Indian market. Lastly, authors conclude that the role of media and social influencers in building a perception of trust seems of little consequence.

Keywords: e-commerce, trust, e-retailers, propensity to trust

Procedia PDF Downloads 359
11283 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 72
11282 Simon Says: What Should I Study?

Authors: Fonteyne Lot

Abstract:

SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.

Keywords: academic success, online self-assessment, student retention, vocational choice

Procedia PDF Downloads 407
11281 Educational Experiences in Engineering in the COVID Era and Their Comparative Analysis, Spain, March to June 2020

Authors: Borja Bordel, Ramón Alcarria, Marina Pérez

Abstract:

In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.

Keywords: educational experience, online education, higher education digitalization, COVID, Spain

Procedia PDF Downloads 144
11280 An Investigation on Engineering Students’ Perceptions towards E-Learning in the UK

Authors: Razzaghifard P., Arya F., Chen S. Chien-I, Abdi B., Razzaghifard V., Arya A. H., Nazary A., Hosseinpour H., Ghabelnezam K.

Abstract:

E-learning, also known as online learning, has indicated increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in the UK. For the purpose of the present study, 145 second-year engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions of e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions of e-learning.

Keywords: e-learning, higher, education, engineering education, online learning

Procedia PDF Downloads 125
11279 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 124
11278 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic

Authors: PB Venkataraman

Abstract:

Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.

Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement

Procedia PDF Downloads 204
11277 Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City

Authors: Tawfig Falani, Abdulalaziz Saleh

Abstract:

Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants.

Keywords: air quality, air pollutants, air quality index (AQI), particulate matter

Procedia PDF Downloads 58
11276 Microseismics: Application in Hydrocarbon Reservoir Management

Authors: Rahul Kumar Singh, Apurva Sharma, Dilip Kumar Srivastava

Abstract:

Tilting of our interest towards unconventional exploitation of hydrocarbons has raised a serious concern to environmentalists. Emerging technologies like horizontal/multi-lateral drilling with subsequent hydraulic fracturing or fracking etc., for exploitation of different conventional/unconventional hydrocarbon reservoirs, are related to creating micro-level seismic events below the surface of the earth. Monitoring of these micro-level seismic events is not possible by the conventional methodology of the seismic method. So, to tackle this issue, a new technology that is microseismic is very much in discussions around the globe. Multiple researches are being carried out these days around the globe in order to prove microseismic as a new essential in the E & P industry, especially for unconventional reservoir management. Microseismic monitoring is now used for reservoir surveillance, and the best application is checking the integrity of the caprock and containment of fluid in it. In general, in whatever terms we want to use micro-seismic related events monitoring and understanding the effectiveness of stimulation, this technology offers a lot of value in terms of insight into the subsurface characteristics and processes, and this makes it really a good geophysical method to be used in future.

Keywords: microseismic, monitoring, hydraulic fracturing or fracking, reservoir surveillance, seismic hazards

Procedia PDF Downloads 186
11275 Effect of Online Mindfulness Training to Tertiary Students’ Mental Health: An Experimental Research

Authors: Abigaile Rose Mary R. Capay, Janne Ly Castillon-Gilpo, Sheila A. Javier

Abstract:

The transition to online learning has been a challenging feat on the mental health of tertiary students. This study investigated whether learning mindfulness strategies online would help in improving students’ imagination, conscientiousness, extraversion, agreeableness and emotional stability, as measured by the International Personality Item Pool (IPIP) Big Five Factor Markers, as well as their dispositional mindfulness as measured by the Mindfulness Attention Awareness Scale (MAAS). Fifty-two college students participated in the experiment. The 23 participants assigned to the treatment condition received 6-weekly experiential sessions of online mindfulness training and were advised to follow a daily mindfulness practice, while the 29 participants from the control group only received a 1-hour lecture. Scores were collected at pretest and posttest. Findings show that there was a significant difference in the pretest and posttest scores of students assigned in the treatment group, likewise medium effect sizes in the variables: dispositional mindfulness (t (22) = 2.64, p = 0.015, d = .550), extraversion (t (22) = 2.76, p = 0.011, d = 0.575), emotional stability (t (22) = 2.99, p = 0.007, d = .624), conscientiousness (t (22) = 2.74, p = 0.012, d = .572) and imagination (t (22) = 4.08, p < .001), but not for agreeableness (t (22) = 2.01, p = 0.057, d = .419). No significant differences were observed on the scores of the control group. Educational institutions are recommended to consider teaching basic mindfulness strategies to tertiary students, as a valuable resource in improving their mental health as they navigate through adjustments in online learning.

Keywords: mindfulness, school-based interventions, MAAS, IPIP Big Five Markers, experiment

Procedia PDF Downloads 60
11274 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran

Authors: S. Mani, M. Kafil, E. Asadi

Abstract:

Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.

Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality

Procedia PDF Downloads 230
11273 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 59
11272 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic

Authors: Jansirani Natarajan, Mickael Antoinne Joseph

Abstract:

The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.

Keywords: engagement, perception, emergency remote learning, COVID-19

Procedia PDF Downloads 66
11271 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 418
11270 Mitigating Self-Regulation Issues in the Online Instruction of Math

Authors: Robert Vanderburg, Michael Cowling, Nicholas Gibson

Abstract:

Mathematics is one of the core subjects taught in the Australian K-12 education system and is considered an important component for future studies in areas such as engineering and technology. In addition to this, Australia has been a world leader in distance education due to the vastness of its geographic landscape. Despite this, research is still needed on distance math instruction. Even though delivery of curriculum has given way to online studies, and there is a resultant push for computer-based (PC, tablet, smartphone) math instruction, much instruction still involves practice problems similar to those original curriculum packs, without the ability for students to self-regulate their learning using the full interactive capabilities of these devices. Given this need, this paper addresses issues students have during online instruction. This study consists of 32 students struggling with mathematics enrolled in a math tutorial conducted in an online setting. The study used a case study design to understand some of the blockades hindering the students’ success. Data was collected by tracking students practice and quizzes, tracking engagement of the site, recording one-on-one tutorials, and collecting data from interviews with the students. Results revealed that when students have cognitively straining tasks in an online instructional setting, the first thing to dissipate was their ability to self-regulate. The results also revealed that instructors could ameliorate the situation and provided useful data on strategies that could be used for designing future online tasks. Specifically, instructors could utilize cognitive dissonance strategies to reduce the cognitive drain of the tasks online. They could segment the instruction process to reduce the cognitive demands of the tasks and provide in-depth self-regulatory training, freeing mental capacity for the mathematics content. Finally, instructors could provide specific scheduling and assignment structure changes to reduce the amount of student centered self-regulatory tasks in the class. These findings will be discussed in more detail and summarized in a framework that can be used for future work.

Keywords: digital education, distance education, mathematics education, self-regulation

Procedia PDF Downloads 137
11269 Factors Affecting Online Tourism Services in Israel

Authors: Shlomit Hon-Snir, Shosh Shahrabai, Sharon Teitler Regev, Anabel Friedlander-Lifszyc

Abstract:

Today, online travel sites account for a large share of the orders for tourism services, leading to the expectation that many traditional travel agencies will become redundant in the future. Technological changes are offering customers a wider variety and better prices, and the improved competition in the industry has increased customer well-being significantly. Therefore, the question is whether all customers can enjoy this change, specifically whether different groups in the Israeli population enjoy the changes similarly. The purpose of this study is to identify the factors that affect the collection of data and the purchase of tourism products online and in particular to identify the barriers and limitations of technology usage among the population. The results of the current research are of great importance both economically and socially. The theory of Reasoned Action assumes that actual behavior is based on intention. Volitional behavior is predicted by individuals' attitudes to that behavior and by the way they think other people will look at them. Two cognitive variables regarding the use of technology are: perceived usefulness and perceived ease-of-use. Moreover, early adopters of innovations have different characteristics than people that adopt an innovation at a later stage. In the study, we analyze four groups of factors: Customer characteristics, internet usage, technology acceptance and product characteristics. Some of the parameters are gender, age, income level, frequency and type of internet use, proficiency in English, traveler type, number of trips abroad, perceived ease of use, perceived usefulness, perceived risk, perceived trust and product type. We investigate online purchasing and online information search separately. Data will be collected using an online questionnaire distributed among a representative sample of 600 citizens in Israel. Some of the research questions will be based on previous research studies (that underwent reliability and validity testing). Those questions will be translated into Hebrew and adjusted for the tested population.

Keywords: customer characteristics, online travel sites, technology acceptance, tourism

Procedia PDF Downloads 204
11268 Mental Health Monitoring System as an Effort for Prevention and Handling of Psychological Problems in Students

Authors: Arif Tri Setyanto, Aditya Nanda Priyatama, Nugraha Arif Karyanta, Fadjri Kirana A., Afia Fitriani, Rini Setyowati, Moh.Abdul Hakim

Abstract:

The Basic Health Research Report by the Ministry of Health (2018) shows an increase in the prevalence of mental health disorders in the adolescent and early adult age ranges. Supporting this finding, data on the psychological examination of the student health service unit at one State University recorded 115 cases of moderate and severe health problems in the period 2016 - 2019. More specifically, the highest number of cases was experienced by clients in the age range of 21-23 years or equivalent, with the mid-semester stage towards the end. Based on the distribution of cases experienced and the disorder becomes a psychological problem experienced by students. A total of 29% or the equivalent of 33 students experienced anxiety disorders, 25% or 29 students experienced problems ranging from mild to severe, as well as other classifications of disorders experienced, including adjustment disorders, family problems, academics, mood disorders, self-concept disorders, personality disorders, cognitive disorders, and others such as trauma and sexual disorders. Various mental health disorders have a significant impact on the academic life of students, such as low GPA, exceeding the limit in college, dropping out, disruption of social life on campus, to suicide. Based on literature reviews and best practices from universities in various countries, one of the effective ways to prevent and treat student mental health disorders is to implement a mental health monitoring system in universities. This study uses a participatory action research approach, with a sample of 423 from a total population of 32,112 students. The scale used in this study is the Beck Depression Inventory (BDI) to measure depression and the Taylor Minnesota Anxiety Scale (TMAS) to measure anxiety levels. This study aims to (1) develop a digital-based health monitoring system for students' mental health situations in the mental health category. , dangers, or those who have mental disorders, especially indications of symptoms of depression and anxiety disorders, and (2) implementing a mental health monitoring system in universities at the beginning and end of each semester. The results of the analysis show that from 423 respondents, the main problems faced by all coursework, such as thesis and academic assignments. Based on the scoring and categorization of the Beck Depression Inventory (BDI), 191 students experienced symptoms of depression. A total of 24.35%, or 103 students experienced mild depression, 14.42% (61 students) had moderate depression, and 6.38% (27 students) experienced severe or extreme depression. Furthermore, as many as 80.38% (340 students) experienced anxiety in the high category. This article will review this review of the student mental health service system on campus.

Keywords: monitoring system, mental health, psychological problems, students

Procedia PDF Downloads 114
11267 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS

Authors: Bashar Al-Sabti, Jehad Harbali

Abstract:

Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.

Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS

Procedia PDF Downloads 98
11266 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications

Authors: Annika J. Meyer, Tom Piechotta

Abstract:

Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.

Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations

Procedia PDF Downloads 48
11265 A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years

Authors: Somruedee Pongsena

Abstract:

The purpose of this study is to follow up on the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects: ethics and moral, knowledge, cognitive skills, interpersonal skills and responsibility, numerical analysis as well as communication and information technology skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t-tests, and F-tests. The findings showed that samples were mostly females younger than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and their experience range was 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of opinion difference, the hypothesis' testing results indicate gender only had different opinion at a significant level of 0.05.

Keywords: follow-up, graduates, knowledge, opinion, work performance.

Procedia PDF Downloads 213
11264 Improving Learning and Teaching of Software Packages among Engineering Students

Authors: Sara Moridpour

Abstract:

To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.

Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment

Procedia PDF Downloads 118
11263 Techno-Psych Serv: Technology-Based Psychological Services Extended to Adults Experiencing Symptoms of Mild Anxiety and Depression

Authors: Marissa C. Esperal

Abstract:

This university-based research project attempted to determine the relevance and effectiveness of the technology-based psychological services extended to selected adults experiencing symptoms of mild anxiety and depression. Ninety-seven participants who voluntarily availed the free online psychological services advertised through a Facebook page (Techno-Psych Serv) signed up for the Informed Consent and Psychological Services Contract Agreement form. These clients availed a maximum of 5 online sessions devoted to online assessment, online counseling and brief therapy sessions using the Google Meet App. Participants who, upon evaluation, were found to still be needing extended psychological and other services were referred to other mental health services institutions. Post-evaluations were conducted using Google Forms upon termination. Findings showed that with a mean of 4.87 (n=97), it was noted that the services provided through the online platform were effective. However, it was noted that the majority of those who availed the services were professionals and skilled workers, thus defeating the objective of extending free psychological services to the marginalized group. It was concluded that offering free technology-based psychological services, though proven effective, is found to be less relevant if the intention is to reach out to the less fortunate and marginalized group. It was further concluded that there is still a need for psychoeducation and mental health promotion among the marginalized sectors. It was recommended that if mental health services are extended to the community of marginalized group, providing physical services are still a better option.

Keywords: technology-based psychological services, adults, mild anxiety, depression

Procedia PDF Downloads 72
11262 Online Bakery Management System Proposal

Authors: Alexander Musyoki, Collins Odour

Abstract:

Over the past few years, the bakery industry in Kenya has experienced significant growth largely in part to the increased adoption of technology and automation in their processes; more specifically due to the adoption of bakery management systems to help in running bakeries. While they have been largely responsible for the improved productivity and efficiency in bakeries, most of them are now outdated and pose more challenges than benefits. The proposed online bakery management system mentioned in this paper aims to address this by allowing bakery owners to track inventory, budget, job progress, and data analytics on each job and in doing so, promote the Sustainable Development Goals 3 and 12, which aim to ensure healthy lives and promote sustainable economic growth as the proposed benefits of these features include scalability, easy accessibility, reduced acquisition costs, better reliability, and improved functionality that will allow bakeries to become more competitive, reduce waste and track inventory more efficiently. To better understand the challenges, a comprehensive study has been performed to assess these traditional systems and try to understand if an online bakery management system can prove to be advantageous to bakery owners. The study conducted gathered feedback from bakery owners and employees in Nairobi County, Kenya using an online survey with a response rate of about 86% from the target population. The responses cited complex and hard to use bakery management systems (59.7%), lack of portability from one device to the other (58.1%) and high acquisition costs (51.6%) as the top challenges of traditional bakery management systems. On the other hand, some of the top benefits that most of the respondents would realize from the online bakery management system was better reliability (58.1%) and reduced acquisition costs (58.1%). Overall, the findings suggest that an online bakery management system has a lot of advantages over traditional systems and is likely to be well-received in the market. In conclusion, the proposed online bakery management system has the potential to improve the efficiency and competitiveness of small-sized bakeries in Nairobi County. Further research is recommended to expand the sample size and diversity of respondents and to conduct more in-depth analyses of the data collected.

Keywords: ICT, technology and automation, bakery management systems, food innovation

Procedia PDF Downloads 85
11261 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia PDF Downloads 182
11260 An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm

Authors: Cebrail Çiflikli, Emre Öner Tartan

Abstract:

Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor.

Keywords: Android mobile application, ECG monitoring, QRS detection, Pan-Tompkins Algorithm

Procedia PDF Downloads 238