Search results for: micro channel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3089

Search results for: micro channel

2519 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 327
2518 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method

Authors: Emmanuel Ophel Gilbert, Williams Speret

Abstract:

The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.

Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids

Procedia PDF Downloads 168
2517 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 123
2516 Slug Initiation Evaluation in Long Horizontal Channels Experimentally

Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi

Abstract:

In this paper, the effects of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cmx10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.

Keywords: liquid holdup, long horizontal channel, slug initiation position, superficial inlet velocity

Procedia PDF Downloads 262
2515 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 430
2514 Experimental Investigation of Interfacial Bond Strength of Concrete Layers

Authors: Rajkamal Kumar, Sudhir Mishra

Abstract:

The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned.

Keywords: adhesion, cohesion, compressive stress, micro-concrete, shear stress, slant shear test

Procedia PDF Downloads 326
2513 Practical Survival Strategies among Undocumented and Documented Brazilian Immigrants in Europe: A Comparative Study in Milan and London

Authors: Edmar Jose da Rocha

Abstract:

This paper is a study on Brazilian irregular migrants living and working in two global cities in Europe, Milan and London. The aim of the journal is to show out why Brazilian choose irregular migration to Milan and London as a strategy. Few studies in Europe have focused on groups coming from the same place of origin and residing in different cities in comparative studies. It is this international comparison that makes this research original. Both in London and Milan there is an economic migration. The reasons showed to migrate to Milan were marriage, citizenship and work. The reasons indicated to migrate to London were work, studies and a better life. In London marriage is a channel for regularisation and citizenship. In both countries, fake documents is a channel for undocumented people to get a job and health care.

Keywords: border, immigration, integration, survival strategies, undocumented, regularisation

Procedia PDF Downloads 312
2512 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop

Authors: J. A. Louw Coetzee, Josua P. Meyer

Abstract:

The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.

Keywords: aspect ratio, microchannel, two-phase, pressure gradient

Procedia PDF Downloads 364
2511 The Impact of Scientific Content of National Geographic Channel on Drawing Style of Kindergarten Children

Authors: Ahmed Amin Mousa, Mona Yacoub

Abstract:

This study depends on tracking children style through what they have drawn after being introduced to 16 visual content through National Geographic Abu Dhabi Channel programs and the study of the changing features in their drawings before applying the visual act with them. The researchers used Goodenough-Harris Test to analyse children drawings and to extract the features which changed in their drawing before and after the visual content. The results showed a positive change especially in the shapes of animals and their properties. Children become more aware of animals’ shapes. The study sample was 220 kindergarten children divided into 130 girls and 90 boys at the Orman Experimental Language School in Dokki, Giza, Egypt. The study results showed an improvement in children drawing with 85% than they were before watching videos.

Keywords: National Geographic, children drawing, kindergarten, Goodenough-Harris Test

Procedia PDF Downloads 146
2510 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics

Authors: Kunal Bhardwaj, Christine Browne

Abstract:

With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.

Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness

Procedia PDF Downloads 119
2509 Novel Algorithm for Restoration of Retina Images

Authors: P. Subbuthai, S. Muruganand

Abstract:

Diabetic Retinopathy is one of the complicated diseases and it is caused by the changes in the blood vessels of the retina. Extraction of retina image through Fundus camera sometimes produced poor contrast and noises. Because of this noise, detection of blood vessels in the retina is very complicated. So preprocessing is needed, in this paper, a novel algorithm is implemented to remove the noisy pixel in the retina image. The proposed algorithm is Extended Median Filter and it is applied to the green channel of the retina because green channel vessels are brighter than the background. Proposed extended median filter is compared with the existing standard median filter by performance metrics such as PSNR, MSE and RMSE. Experimental results show that the proposed Extended Median Filter algorithm gives a better result than the existing standard median filter in terms of noise suppression and detail preservation.

Keywords: fundus retina image, diabetic retinopathy, median filter, microaneurysms, exudates

Procedia PDF Downloads 334
2508 Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield

Authors: Himali N. Balasooriya, Kithsiri B. Dassanayake, Saman Seneweera, Said Ajlouni

Abstract:

Increase in atmospheric CO2 concentration [CO2] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO2] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO2] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO2] (400, 650 and 950 µmol mol-1) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO2] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO2] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol-1 [CO2], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol-1 [CO2] but no increment was found at 900 µmol mol-1 [CO2]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO2] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO2] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO2].

Keywords: atmospheric CO₂ concentration, fruit yield, strawberry, temperature

Procedia PDF Downloads 232
2507 Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties.

Keywords: magnetorheological elastomers, iron oxides, ionic liquids, dispersion

Procedia PDF Downloads 324
2506 Significance of Square Non-Spiral Microcoils for Biomedical Applications

Authors: Himanshu Chandrakar, Krishnapriya S., Rama Komaragiri, Suja K. J.

Abstract:

Micro coils are significant components for micro magnetic sensors and actuators especially in biomedical devices. Non-spiral planar microcoils of square, hexagonal and octagonal shapes are introduced for the first time in this paper. Comparison between different planar spiral and non-spiral coils are also discussed. The fabrication advantages and low power dissipation of non-spiral structures make them a strong alternative for conventional spiral planar coils. Series resistance of non-spiral coil is lesser than that of spiral coils though magnetic field is slightly lesser for non-spiral coils. Comparison of different planar microcoils shows that the proposed square non-spiral coil gives better performance than other structures.

Keywords: non-spiral planar microcoil, power dissipation, series resistance, spiral

Procedia PDF Downloads 158
2505 Secure Transmission Scheme in Device-to-Device Multicast Communications

Authors: Bangwon Seo

Abstract:

In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.

Keywords: device-to-device communications, wiretap channel, secure transmission, precoding

Procedia PDF Downloads 286
2504 Peristaltic Transport of a Jeffrey Fluid with Double-Diffusive Convection in Nanofluids in the Presence of Inclined Magnetic Field

Authors: Safia Akram

Abstract:

In this article, the effects of peristaltic transport with double-diffusive convection in nanofluids through an asymmetric channel with different waveforms is presented. Mathematical modelling for two-dimensional and two directional flows of a Jeffrey fluid model along with double-diffusive convection in nanofluids are given. Exact solutions are obtained for nanoparticle fraction field, concentration field, temperature field, stream functions, pressure gradient and pressure rise in terms of axial and transverse coordinates under the restrictions of long wavelength and low Reynolds number. With the help of computational and graphical results the effects of Brownian motion, thermophoresis, Dufour, Soret, and Grashof numbers (thermal, concentration, nanoparticles) on peristaltic flow patterns with double-diffusive convection are discussed.

Keywords: nanofluid particles, peristaltic flow, Jeffrey fluid, magnetic field, asymmetric channel, different waveforms

Procedia PDF Downloads 377
2503 A Novel Microcontroller Based Islanding Protection of Distributed Generation Systems

Authors: Saeid Jalilzadeh, Majid Pakdel

Abstract:

The customer demand for better power quality and higher reliability has forced the power industry to use distributed generations (DGs) such as wind power and photo voltaic arrays. Islanding is a phenomenon occurs when a power grid becomes electrically isolated from the power system and the distribution system is energized by distributed generators. It is necessary to disconnect all distributed generators immediately after islanding occurrence. Therefore a DG system should have the capability to detect islanding phenomena. In this paper, a novel micro controller based relay for anti-islanding protection of a typical DG system is proposed. The simulation results using Proteus software verify the proper operation and effectiveness of the proposed protective relay.

Keywords: islanding, distributed generation (DG), protective relay, micro controller, proteus software

Procedia PDF Downloads 570
2502 On Virtual Coordination Protocol towards 5G Interference Mitigation: Modelling and Performance Analysis

Authors: Bohli Afef

Abstract:

The fifth-generation (5G) wireless systems is featured by extreme densities of cell stations to overcome the higher future demand. Hence, interference management is a crucial challenge in 5G ultra-dense cellular networks. In contrast to the classical inter-cell interference coordination approach, which is no longer fit for the high density of cell-tiers, this paper proposes a novel virtual coordination based on the dynamic common cognitive monitor channel protocol to deal with the inter-cell interference issue. A tractable and flexible model for the coverage probability of a typical user is developed through the use of the stochastic geometry model. The analyses of the performance of the suggested protocol are illustrated both analytically and numerically in terms of coverage probability.

Keywords: ultra dense heterogeneous networks, dynamic common channel protocol, cognitive radio, stochastic geometry, coverage probability

Procedia PDF Downloads 322
2501 Magnetic Nano-Composite of Self-Doped Polyaniline Nanofibers for Magnetic Dispersive Micro Solid Phase Extraction Applications

Authors: Hatem I. Mokhtar, Randa A. Abd-El-Salam, Ghada M. Hadad

Abstract:

An improved nano-composite of self-doped polyaniline nanofibers and silica-coated magnetite nanoparticles were prepared and evaluated for suitability to magnetic dispersive micro solid-phase extraction. The work focused on optimization of the composite capacity to extract four fluoroquinolones (FQs) antibiotics, ciprofloxacin, enrofloxacin, danofloxacin, and difloxacin from water and improvement of composite stability towards acid and atmospheric degradation. Self-doped polyaniline nanofibers were prepared by oxidative co-polymerization of aniline with anthranilic acid. Magnetite nanopariticles were prepared by alkaline co-precipitation and coated with silica by silicate hydrolysis on magnetite nanoparticles surface at pH 6.5. The composite was formed by self-assembly by mixing self-doped polyaniline nanofibers with silica-coated magnetite nanoparticles dispersions in ethanol. The composite structure was confirmed by transmission electron microscopy (TEM). Self-doped polyaniline nanofibers and magnetite chemical structures were confirmed by FT-IR while silica coating of the magnetite was confirmed by Energy Dispersion X-ray Spectroscopy (EDS). Improved stability of the composite magnetic component was evidenced by resistance to degrade in 2N HCl solution. The adsorption capacity of self-doped polyaniline nanofibers based composite was higher than previously reported corresponding composite prepared from polyaniline nanofibers instead of self-doped polyaniline nanofibers. Adsorption-pH profile for the studied FQs on the prepared composite revealed that the best pH for adsorption was in range of 6.5 to 7. Best extraction recovery values were obtained at pH 7 using phosphate buffer. The best solvent for FQs desorption was found to be 0.1N HCl in methanol:water (8:2; v/v) mixture. 20 mL of Spiked water sample with studied FQs were preconcentrated using 4.8 mg of composite and resulting extracts were analysed by HPLC-UV method. The prepared composite represented a suitable adsorbent phase for magnetic dispersive micro-solid phase application.

Keywords: fluoroquinolones, magnetic dispersive micro extraction, nano-composite, self-doped polyaniline nanofibers

Procedia PDF Downloads 117
2500 Enhancement of Mulberry Leaf Yield and Water Productivity in Eastern Dry Zone of Karnataka, India

Authors: Narayanappa Devakumar, Chengalappa Seenappa

Abstract:

The field experiments were conducted during Rabi 2013 and summer 2014 at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India to find out the response of mulberry to different methods, levels of irrigation and mulching. The results showed that leaf yield and water productivity of mulberry were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip with lower level of irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield and water productivity (42857 kg ha-1 yr-1and 364.41 kg hacm-1) than surface drip with higher level of irrigation at 1.0 CPE (38809 kg ha-1 yr-1 and 264.10 kg hacm-1) and micro spray jet (39931 kg ha-1 yr-1 and 271.83 kg hacm-1). Further, subsurface drip recorded minimum water used to produce one kg of leaf and to earn one rupee of profit (283 L and 113 L) compared to surface drip (390 L and 156 L) and micro spray jet (379 L and 152 L) irrigation methods. Mulberry leaf yield increased and water productivity decreased with increased levels of irrigation. However, these results indicated that irrigation of mulberry with subsurface drip increased leaf yield and water productivity by saving 20% of irrigation water than surface drip and micro spray jet irrigation methods in Eastern Dry Zone (EDZ) of Karnataka.

Keywords: cumulative pan evaporation, mulaberry, subsurface drip irrigation, water productivity

Procedia PDF Downloads 272
2499 The Relationship of Fast Food Consumption Preference with Macro and Micro Nutrient Adequacy Students of SMP Negeri 5 Padang

Authors: Widari

Abstract:

This study aims to determine the relationship of fast food consumption preferences with macro and micro nutrient adequacy students of SMP Negeri 5 Padang. This study used a cross sectional study conducted on 100 students of SMP Negeri 5 Padang. The variables studied were fast food preferences, nutrition adequacy macronutrients (carbohydrate, protein, fat, fiber) and micro nutrients (sodium, calcium, iron). Confounding factor in this study was the physical activity level because it was considered quite affecting food consumption of students. Data collected by using a questionnaire food recall as many as 2 x 24 hours to see the history of the respondents eat at school day and on holidays. Then, data processed using software Nutrisurvey and Microsoft Excel 2010. The analysis was performed on samples that have low and medium category on physical activity. The physical activity was not analyzed with another variable to see the strength of the relationship between independent and dependent variables. So that, do restrictions on physical activity variables in an attempt to get rid of confounding in design. Univariate and bivariate analyzes performed using SPSS 16.0 for Windows with Kolmogrov-Smirnov statistical tests, confidence level = 95% (α = 0,05). Results of univariate analysis showed that more than 70% of respondents liked fast food. On average, respondents were malnourished macro; malnourished fiber (100%), carbohydrates (72%), and protein (56%), whereas for fat, excess intake of the respondents (41%). Furthermor, many respondents who have micronutrient deficiencies; 98% for sodium, 96% for iron, and 91% for calcium. The results of the bivariate analysis showed no significant association between fast food consumption preferences with macro and micro nutrient adequacy (p > 0,05). This happens because in the fact not all students who have a preference for fast food actually eat them. To study better in the future, it is expected sampling really like and eat fast food in order to obtain better analysis results.

Keywords: fast food, nutritional adequacy, preferences, students

Procedia PDF Downloads 370
2498 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties

Procedia PDF Downloads 245
2497 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 300
2496 Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination

Authors: Kevin Zhao, Norman J. Horing

Abstract:

A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology.

Keywords: cell sorter, CTC cell, detection and discrimination, dielectrophoresisords, simulation

Procedia PDF Downloads 424
2495 A Review of Self-Healing Concrete and Various Methods of Its Scientific Implementation

Authors: Davoud Beheshtizadeh, Davood Jafari

Abstract:

Concrete, with its special properties and advantages, has caused it to be widely and increasingly used in construction industry, especially in infrastructures of the country. On the other hand, some defects of concrete and, most importantly, micro-cracks in the concrete after setting have caused the cost of repair and maintenance of infrastructure; therefore, self-healing concretes have been of attention in other countries in the recent years. These concretes have been repaired with general mechanisms such as physical, chemical, biological and combined mechanisms, each of which has different subsets and methods of execution and operation. Also, some of these types of mechanisms are of high importance, which has led to a special production method, and as this subject is new in Iran, this knowledge is almost unknown or at least some part of it has not been considered at all. The present article completely introduces various self-healing mechanisms as a review and tries to present the disadvantages and advantages of each method along with its scope of application.

Keywords: micro-cracks, self-healing concrete, microcapsules, concrete, cement, self-sensitive

Procedia PDF Downloads 134
2494 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number

Authors: A. Nourbakhsh

Abstract:

A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the center line (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the center line. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.

Keywords: suspensions, Poiseuille flow, effective viscosity, Reynolds number

Procedia PDF Downloads 349
2493 Effect of Homogeneous and Heterogeneous Chemical Reactions on Peristaltic Flow of a Jeffrey Fluid in an Asymmetric Channel

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

In this paper, the dispersion of a solute in the peristaltic flow of a Jeffrey fluid in the presence of both homogeneous and heterogeneous chemical reactions has been discussed. The average effective dispersion coefficient has been found using Taylor's limiting condition under long wavelength approximation. It is observed that the average dispersion coefficient increases with amplitude ratio which implies that dispersion is more in the presence of peristalsis. The average effective dispersion coefficient increases with Jeffrey parameter in the cases of both homogeneous and combined homogeneous and heterogeneous chemical reactions. Further, dispersion decreases with a phase difference, homogeneous reaction rate parameters, and heterogeneous reaction rate parameter.

Keywords: peristalsis, dispersion, chemical reaction, Jeffrey fluid, asymmetric channel

Procedia PDF Downloads 578
2492 Effect of Weld Build-up on the Mechanical Performance of Railway Wheels

Authors: Abdullah Kaymakci, Daniel M. Madyira, Hilda Moseme

Abstract:

Repairing railway wheels by weld build-up is one of the technological solutions that have been applied in the past. However, the effects of this process on the material properties are not well established. The effects of the weld build-up on the mechanical properties of the wheel material in comparison to the required mechanical properties for proper service performance were investigated in this study. A turning process was used to remove the worn surface from the railway wheel. During this process 5mm thickness was removed to ensure that, if there was any weld build-up done in the previous years, it was removed. This was followed by welding a round bar on the sides of the wheel to provide build-up guide. There were two welding processes performed, namely submerged arc welding (SAW) and gas metal arc welding (GMAW). Submerged arc welding (SAW) was used to build up weld on one rim while the other rim was just left with metal arc welding of the round bar at the edges. Both processes produced hardness values that were lower than that of the parent material of 195 HV as the GMAW welds had an average of 184 HV and SAW had an average of 194 HV. Whilst a number of defects were noted on the GMAW welds at both macro and micro levels, SAW welds had less defects and they were all micro defects. All the microstructures were ferritic but with differences in grain sizes. Furthermore, in the SAW weld build up, the grains of the weld build-up appeared to be elongated which was a result of the cooling rate. Using GMAW instead of SAW would result in improved wear and fatigue performance.

Keywords: submerged arc welding, gas metal arc welding, railway wheel, microstructure, micro hardness

Procedia PDF Downloads 300
2491 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 514
2490 Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

Authors: A. Jawahar

Abstract:

In this paper, the dependence of soliton pulses with respect to phase in a 10 Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the I also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point I.

Keywords: Soliton interaction, Initial relative spacing, phase, Perturbation theory and telecommunication system

Procedia PDF Downloads 466