Search results for: mercury ion sensing
745 Development of Star Tracker for Satellite
Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko
Abstract:
Currently in Kazakhstan much attention is paid to the development of space branch. Successful launch of two Earth remote sensing satellite is carried out, projects on development of components for satellite are being carried out. In particular, the project on development of star tracker experimental model is completed. In the future it is planned to use this experimental model for development of star tracker prototype. Main stages of star tracker experimental model development are considered in this article.Keywords: development, prototype, satellite, star tracker
Procedia PDF Downloads 477744 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing
Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed
Abstract:
It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC
Procedia PDF Downloads 191743 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 219742 Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions
Authors: Aidan Battison, Neliswa Mama
Abstract:
Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond.Keywords: chemosensor, "click" chemistry, coumarin, fluorescence, static quenching, triazole
Procedia PDF Downloads 163741 Top-Down Approach for Fabricating Hematite Nanowire Arrays
Authors: Seungmin Shin, Jin-Baek Kim
Abstract:
Hematite (α-Fe2O3) has very good semiconducting properties with a band gap of 2.1 eV and is antiferromagnetic. Due to its electrochemical stability, low toxicity, wide abundance, and low-cost, hematite, it is a particularly attractive material for photoelectrochemical cells. Additionally, hematite has also found applications in gas sensing, field emission, heterogeneous catalysis, and lithium-ion battery electrodes. Here, we discovered a new universal top-down method for the synthesis of one-dimensional hematite nanowire arrays. Various shapes and lengths of hematite nanowire have been easily fabricated over large areas by sequential processes. The obtained hematite nanowire arrays are promising candidates as photoanodes in photoelectrochemical solar cells.Keywords: hematite, lithography, nanowire, top-down process
Procedia PDF Downloads 249740 An Overview of Electronic Waste as Aggregate in Concrete
Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan
Abstract:
Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.Keywords: dumping, electronic waste, landfill, toxic chemicals
Procedia PDF Downloads 170739 Leveraging Remote Sensing Information for Drought Disaster Risk Management
Authors: Israel Ropo Orimoloye, Johanes A. Belle, Olusola Adeyemi, Olusola O. Ololade
Abstract:
With more than 100,000 orbits during the past 20 years, Terra has significantly improved our knowledge of the Earth's climate and its implications on societies and ecosystems of human activity and natural disasters, including drought events. With Terra instrument's performance and the free distribution of its products, this study utilised Terra MOD13Q1 satellite data to assess drought disaster events and its spatiotemporal patterns over the Free State Province of South Africa between 2001 and 2019 for summer, autumn, winter, and spring seasons. The study also used high-resolution downscaled climate change projections under three representative concentration pathways (RCP). Three future periods comprising the short (the 2030s), medium (2040s), and long term (2050s) compared to the current period are analysed to understand the potential magnitude of projected climate change-related drought. The study revealed that the year 2001 and 2016 witnessed extreme drought conditions where the drought index is between 0 and 20% across the entire province during summer, while the year 2003, 2004, 2007, and 2015 observed severe drought conditions across the region with variation from one part to the another. The result shows that from -24.5 to -25.5 latitude, the area witnessed a decrease in precipitation (80 to 120mm) across the time slice and an increase in the latitude -26° to -28° S for summer seasons, which is more prominent in the year 2041 to 2050. This study emphasizes the strong spatio-environmental impacts within the province and highlights the associated factors that characterise high drought stress risk, especially on the environment and ecosystems. This study contributes to a disaster risk framework to identify areas for specific research and adaptation activities on drought disaster risk and for environmental planning in the study area, which is characterised by both rural and urban contexts, to address climate change-related drought impacts.Keywords: remote sensing, drought disaster, climate scenario, assessment
Procedia PDF Downloads 188738 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric
Authors: J. R. Mudakavi, K. Puttanna
Abstract:
Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water
Procedia PDF Downloads 337737 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters
Authors: Tridipa Biswas, Kamal Pandey
Abstract:
A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters
Procedia PDF Downloads 311736 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India
Authors: Ashok Tejankar, Rohan K. Pathrikar
Abstract:
Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.Keywords: hard rock, artificial recharge, remote sensing, GIS
Procedia PDF Downloads 292735 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots
Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau
Abstract:
Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence
Procedia PDF Downloads 634734 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 369733 Fluorescence Gold Nanoparticles: Sensing Properties and Cytotoxicity Studies in MCF-7 Human Breast Cancer Cells
Authors: Cristina Núñez, Rufina Bastida, Elena Labisbal, Alejandro Macías, María T. Pereira, José M. Vila
Abstract:
A highly selective quinoline-based fluorescent sensor L was designed in order to functionalize gold nanoparticles (GNPs@L). The cytotoxicity of compound L and GNPs@L on the MCF-7 breast cancer cells was explored and it was observed that L and GNPs@L compounds induced apoptosis in MCF-7 cancer cells. The cellular uptake of the hybrid system GNPs@L was studied using confocal laser scanning microscopy (CLSM).Keywords: cytotoxicity, fluorescent probes, nanoparticles, quinoline
Procedia PDF Downloads 384732 Effective Training System for Riding Posture Using Depth and Inertial Sensors
Authors: Sangseung Kang, Kyekyung Kim, Suyoung Chi
Abstract:
A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding.Keywords: posture correction, posture training, riding posture, riding simulator
Procedia PDF Downloads 477731 Development of a Sprayable Piezoelectric Material for E-Textile Applications
Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby
Abstract:
E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile
Procedia PDF Downloads 466730 Environmental and Health Risks Associated with Dental Waste Management: A Review
Authors: Y. Y. Babanyara, B. A. Gana, T. Garba, M. A. Batari
Abstract:
Proper management of dental waste is a crucial issue for maintaining human health and the environment. The waste generated in the dental clinics has the potential for spreading infections and causing diseases, so improper disposal of these dental wastes can cause harm to the dentist, the people in immediate vicinity of the dentist, waste handlers, general public and the environment through production of toxins or as by-products of the destruction process. Staff that provide dental healthcare ought to be aware of the proper handling and the system of management of dental waste used by different dental hospitals. The method of investigation adopted in the paper involved a desk study in which documents and records relating to dental waste handling were studied to obtain background information on existing dental waste management in Nigeria other countries of the world are also mentioned as examples. Additionally, information on generation, handling, segregation, risk associated during handling and treatment of dental medical waste were sought in order to determine the best method for safe disposal. This article provides dentists with the information they need to properly dispose of mercury and amalgam waste, and provides suggestions for managing the other wastes that result from the day-to-day activities of a dental office such as: used X-ray fixers and developers; cleaners for X-ray developer systems; lead foils, shields and aprons; chemiclave/chemical sterilant solutions; disinfectants, cleaners, and other chemicals; and, general office waste. Additionally, this study may be beneficial for authorities and researchers of developing countries to work towards improving their present dental waste management system.Keywords: clinic, dental, disposal, environment, waste management
Procedia PDF Downloads 320729 Assessing the Effect of Urban Growth on Land Surface Temperature: A Case Study of Conakry Guinea
Authors: Arafan Traore, Teiji Watanabe
Abstract:
Conakry, the capital city of the Republic of Guinea, has experienced a rapid urban expansion and population increased in the last two decades, which has resulted in remarkable local weather and climate change, raise energy demand and pollution and treating social, economic and environmental development. In this study, the spatiotemporal variation of the land surface temperature (LST) is retrieved to characterize the effect of urban growth on the thermal environment and quantify its relationship with biophysical indices, a normalized difference vegetation index (NDVI) and a normalized difference built up Index (NDBI). Landsat data TM and OLI/TIRS acquired respectively in 1986, 2000 and 2016 were used for LST retrieval and Land use/cover change analysis. A quantitative analysis based on the integration of a remote sensing and a geography information system (GIS) has revealed an important increased in the LST pattern in the average from 25.21°C in 1986 to 27.06°C in 2000 and 29.34°C in 2016, which was quite eminent with an average gain in surface temperature of 4.13°C over 30 years study period. Additionally, an analysis using a Pearson correlation (r) between (LST) and the biophysical indices, normalized difference vegetation index (NDVI) and a normalized difference built-up Index (NDBI) has revealed a negative relationship between LST and NDVI and a strong positive relationship between LST and NDBI. Which implies that an increase in the NDVI value can reduce the LST intensity; conversely increase in NDBI value may strengthen LST intensity in the study area. Although Landsat data were found efficient in assessing the thermal environment in Conakry, however, the method needs to be refined with in situ measurements of LST in the future studies. The results of this study may assist urban planners, scientists and policies makers concerned about climate variability to make decisions that will enhance sustainable environmental practices in Conakry.Keywords: Conakry, land surface temperature, urban heat island, geography information system, remote sensing, land use/cover change
Procedia PDF Downloads 247728 Orthostatic Hypotension among Patients Aged above 65 Years Admitted to Medical Wards in a Tertiary Care Hospital, Sri Lanka
Authors: G. R. Constantine, M.C.K. Thilakasiri, V.S. Mohottala, T.V. Soundaram, D.S. Rathnayake, E.G.H.E. De Silva, A.L.S. Mohamed, V.R. Weerasekara
Abstract:
Orthostatic hypotension is prevalent in the elderly population, and it is an important risk factor contributing to falls in the elderly. This study aims to evaluate the prevalence of orthostatic hypotension in hospitalized elderly patients, changes in blood pressure during the hospital stay, morbidities associated with it and its association with falls in the elderly. A cross-sectional descriptive study was conducted in the National Hospital of Sri Lanka (NHSL) in a sample of 120 patients of age 65 years or above who were admitted to the medical wards. The demographic, clinical data was obtained by an interviewer-administered questionnaire. Two validated questionnaires were used to assess symptoms and effects of orthostatic hypotension and risk factors associated with falls. Orthostatic hypotension on admission and after 3 days of hospital stay was measured by bed-side mercury sphygmomanometer. Prevalence of orthostatic hypotension among the study population was 63.3%(76 patients). But no significant change in the orthostatic hypotension noted after 3 days of hospital admission (SND 0.61, SE= 5.59, p=0.27). There was no significant association found between orthostatic hypotension and its symptoms (dizziness and vertigo, vision problems, malaise, fatigue, poor concentration, neck stiffness), impact on standing or walking and non-communicable diseases. Falls were experienced by 27.5 % (33 patients) of the study population and prevalence of patients with orthostatic hypotension who had experienced falls was 25.9% (28 patients). In conclusions, orthostatic hypotension is more prevalent among elderly patients, but It wasn’t associated with symptoms, and non-communicable diseases, or as a risk factor for falls in elderly.Keywords: orthostatic hypotension, elderly falls, emergency geriatric, Sri Lanka
Procedia PDF Downloads 113727 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays
Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng
Abstract:
Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers
Procedia PDF Downloads 243726 Visual Analytics of Higher Order Information for Trajectory Datasets
Authors: Ye Wang, Ickjai Lee
Abstract:
Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches.Keywords: visual analytics, higher order information, trajectory datasets, spatio-temporal data
Procedia PDF Downloads 402725 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 183724 Optics Meets Microfluidics for Highly Sensitive Force Sensing
Authors: Iliya Dimitrov Stoev, Benjamin Seelbinder, Elena Erben, Nicola Maghelli, Moritz Kreysing
Abstract:
Despite the revolutionizing impact of optical tweezers in materials science and cell biology up to the present date, trapping has so far extensively relied on specific material properties of the probe and local heating has limited applications related to investigating dynamic processes within living systems. To overcome these limitations while maintaining high sensitivity, here we present a new optofluidic approach that can be used to gently trap microscopic particles and measure femtoNewton forces in a contact-free manner and with thermally limited precision.Keywords: optofluidics, force measurements, microrheology, FLUCS, thermoviscous flows
Procedia PDF Downloads 171723 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 95722 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data
Authors: Tapan Jain, Davender Singh Saini
Abstract:
Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network
Procedia PDF Downloads 618721 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 236720 A System Functions Set-Up through Near Field Communication of a Smartphone
Authors: Jaemyoung Lee
Abstract:
We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.Keywords: system set-up, near field communication, smartphone, android
Procedia PDF Downloads 337719 Application of GIS Techniques for Analysing Urban Built-Up Growth of Class-I Indian Cities: A Case Study of Surat
Authors: Purba Biswas, Priyanka Dey
Abstract:
Worldwide rapid urbanisation has accelerated city expansion in both developed and developing nations. This unprecedented urbanisation trend due to the increasing population and economic growth has caused challenges for the decision-makers in city planning and urban management. Metropolitan cities, class-I towns, and major urban centres undergo a continuous process of evolution due to interaction between socio-cultural and economic attributes. This constant evolution leads to urban expansion in all directions. Understanding the patterns and dynamics of urban built-up growth is crucial for policymakers, urban planners, and researchers, as it aids in resource management, decision-making, and the development of sustainable strategies to address the complexities associated with rapid urbanisation. Identifying spatio-temporal patterns of urban growth has emerged as a crucial challenge in monitoring and assessing present and future trends in urban development. Analysing urban growth patterns and tracking changes in land use is an important aspect of urban studies. This study analyses spatio-temporal urban transformations and land-use and land cover changes using remote sensing and GIS techniques. Built-up growth analysis has been done for the city of Surat as a case example, using the GIS tools of NDBI and GIS models of the Built-up Urban Density Index and Shannon Entropy Index to identify trends and the geographical direction of transformation from 2005 to 2020. Surat is one of the fastest-growing urban centres in both the state and the nation, ranking as the 4th fastest-growing city globally. This study analyses the dynamics of urban built-up area transformations both zone-wise and geographical direction-wise, in which their trend, rate, and magnitude were calculated for the period of 15 years. This study also highlights the need for analysing and monitoring the urban growth pattern of class-I cities in India using spatio-temporal and quantitative techniques like GIS for improved urban management.Keywords: urban expansion, built-up, geographic information system, remote sensing, Shannon’s entropy
Procedia PDF Downloads 74718 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 131717 Mercury (Hg) Concentration in Fish Marketed in the São Luís Fish Market (MA) and Potential Exposure of Consumers
Authors: Luiz Drude de Lacerda, Kevin Luiz Cordeiro Ferrer do Carmo, Victor Lacerda Moura, Rayone Wesley Santos de Oliveira, Moisés Fernandes Bezerra
Abstract:
Fish is a food source well recognized for its health benefits. However, the consumption of fish, especially carnivorous species, is the main path of human exposure to Hg, a widely distributed pollutant on the planet and that accumulates along food chains. Studies on the impacts on public health by fish intake show existing toxic risks even when at low concentrations. This study quantifies, for the first time, the concentrations of Hg in muscle tissue of the nine most commercialized fish species in the fish market of São Luís (MA) in north Brazil and estimates the consequent human exposure through consumption. Concentrations varied according to trophic level, with the highest found in the larger carnivorous species; the Yellow hake (Cynoscion acoupa) (296.4 ± 241.2 ng/g w.w) and the Atlantic croaker (Micropogonias undulatus) (262.8 ± 89.1 ng/g w.w.), whereas the lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (20.5 ± 9.6 ng/g w.w.). Significant correlations were observed between Hg concentrations and individual length in only two species: the Flaming catfish (Bagre marinus) and the Atlantic bumper (Chloroscombrus crysurus). Given the relatively uniform size of individuals of the other species and/or the small number of samples, this relationship was not found for the other species. The estimated risk coefficients, despite the relatively low concentrations of Hg, suggest that yellow hake and Whitemouth croaker (Micropogonias furnieri), fish most consumed by the local population, present some risk to human health (> 1) HQ and THQ, depending on the frequency of their consumption.Keywords: contamination, fish, human exposure, risk assessment
Procedia PDF Downloads 114716 Source Separation for Global Multispectral Satellite Images Indexing
Authors: Aymen Bouzid, Jihen Ben Smida
Abstract:
In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images
Procedia PDF Downloads 403