Search results for: link data
25453 Boost for Online Language Course through Peer Evaluation
Authors: Kirsi Korkealehto
Abstract:
The purpose of this research was to investigate how the peer evaluation concept was perceived by language teachers developing online language courses. The online language courses in question were developed in language teacher teams within a nationwide KiVAKO-project funded by the Finnish Ministry of Education and Culture. The participants of the project were 86 language teachers of 26 higher education institutions in Finland. The KiVAKO-project aims to strengthen the language capital at higher education institutions by building a nationwide online language course offering on a shared platform. All higher education students can study the courses regardless of their home institutions. The project covers the following languages: Chinese, Estonian, Finnish Sign Language, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish on the levels CEFR A1-C1. The courses were piloted in the autumn term of 2019, and an online peer evaluation session was organised for all project participating teachers in spring 2020. The peer evaluation utilised the quality criteria for online implementation, which was developed earlier within the eAMK-project. The eAMK-project was also funded by the Finnish Ministry of Education and Culture with the aim to improve higher education institution teachers’ digital and pedagogical competences. In the online peer evaluation session, the teachers were divided into Zoom breakout rooms, in each of which two pilot courses were presented by their teachers dialogically. The other language teachers provided feedback on the course on the basis of the quality criteria. Thereafter good practices and ideas were gathered to an online document. The breakout rooms were facilitated by one teacher who was instructed and provided a slide-set prior to the online session. After the online peer evaluation sessions, the language teachers were asked to respond to an online questionnaire for feedback. The questionnaire included three multiple-choice questions using the Likert-scale rating and two open-ended questions. The online questionnaire was answered after the sessions immediately, the questionnaire link and the QR-code to it was on the last slide of the session, and it was responded at the site. The data comprise online questionnaire responses of the peer evaluation session and the researcher’s observations during the sessions. The data were analysed with a qualitative content analysis method with the help of Atlas.ti programme, and the Likert scale answers provided results per se. The observations were used as complementary data to support the primary data. The findings indicate that the working in the breakout rooms was successful, and the workshops proceeded smoothly. The workshops were perceived as beneficial in terms of improving the piloted courses and developing the participants’ own work as teachers. Further, the language teachers stated that the collegial discussions and sharing the ideas were fruitful. The aspects to improve the workshops were to give more time for free discussions and the opportunity to familiarize oneself with the quality criteria and the presented language courses beforehand. The quality criteria were considered to provide a suitable frame for self- and peer evaluations.Keywords: higher education, language learning, online learning, peer-evaluation
Procedia PDF Downloads 12725452 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 35425451 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach
Authors: Jerry Q. Cheng
Abstract:
Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing
Procedia PDF Downloads 16725450 Artificial Intelligence Approach to Manage Human Resources Information System Process in the Construction Industry
Authors: Ahmed Emad Ahmed
Abstract:
This paper aims to address the concept of human resources information systems (HRIS) and how to link it to new technologies such as artificial intelligence (AI) to be implemented in two human resources processes. A literature view has been collected to cover the main points related to HRIS, AI, and BC. A study case has been presented by generating a random HRIS to apply some AI operations to it. Then, an algorithm was applied to the database to complete some human resources processes, including training and performance appraisal, using a pre-trained AI model. After that, outputs and results have been presented and discussed briefly. Finally, a conclusion has been introduced to show the ability of new technologies such as AI and ML to be applied to the human resources management processes.Keywords: human resources new technologies, HR artificial intelligence, HRIS AI models, construction AI HRIS
Procedia PDF Downloads 17225449 Revisiting the Link between Corporate Social Performance and Corporate Financial Performance Post 2008 Global Economic Crisis
Authors: Anand Choudhary
Abstract:
Following the global economic crisis in 2008, businesses and more especially the big multinational conglomerates were increasingly viewed by the people world over as one of the major causes of the economic problems faced by millions globally, in terms of job loss and lifetime savings being wiped out as banks and pension funds went bankrupt and people stared at an insecure financial future. This caused a lot of resentment in the public against big businesses and fueled several protest movements by the people such as “Occupy Wall Street” in different parts of the world. This forced the big businesses to respond to the challenge by adopting more people-centric policies and initiatives for local communities in societies where they operate as part of their corporate social responsibility (CSR), in order to regain their social acceptance among the people whilst earning their ‘social license to operate’. The current paper studies many of such large MNCs across the United States of America, India and South Africa, which changed the way they did business earlier, following the global economic crisis in 2008, by incorporating capacity building initiatives for local communities as part of their CSR strategy and explores whether it has contributed to improving their financial performance. It is a conceptual research paper using secondary source data. The findings reveal that there is a positive correlation between the companies’ corporate social performance and corporate financial performance. In addition, the findings also bring to light that the MNCs examined as part of the current paper have improved their image in the eyes of their stakeholders following the change in their CSR strategy and initiatives.Keywords: corporate social responsibility (CSR), Corporate Social Performance (CSP), Corporate Financial Performance (CFP), local communities
Procedia PDF Downloads 33625448 Do Formalization and Centralization Influence Self-Efficacy and Its Outcomes? A Study of Direct and Moderating Effects
Authors: Ghulam Mustafa, Richard Glavee-Geo
Abstract:
This study examined the relationship between traditional variables of organizational structure (formalization and centralization), employee work related self-efficacy and employee subjective performance. The study further explored the moderating role of formalization and centralization on the link between employee self-efficacy and job performance. Five hypotheses were tested using a sample of employees from a large public organization in Pakistan. The results indicated a significant positive relationship between employee self-efficacy and job performance. Regarding the direct effects of formalization and centralization on self-efficacy, the results showed that formalization relates positively while centralization has a negative impact on self-efficacy. However, the results revealed no empirical evidence to confirm the hypotheses that formalization and centralization strengthen or weaken the relationship between self-efficacy and job performance.Keywords: centralization, formalization, job performance, self-efficacy
Procedia PDF Downloads 29825447 Developing Artistic Concepts for Kindergarten Children in Egypt Using Graphic Activities
Authors: Mona Yacoub, Ahmed Amin Mousa
Abstract:
The current work presents a program for children in Egypt. This program involved a collection of artistic activities that purposes to improve some language, artistic skills of kindergarten children. The researchers have prepared a questionnaire for the link between the target group and the content. The questionnaire has been presented to experts for adjudicating. The program was applied to a group of 30 children. Another questionnaire has been prepared by the researchers for measuring the activities’ effect on the children. The second questionnaire was considered as the pre-test and post-test. Finally, after applying the activities and the questionnaire, the researchers detected a significant difference in favor of the post-test results.Keywords: Developing, concepts, kindergarten, children, graphic activities
Procedia PDF Downloads 16125446 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 8625445 Legume and Nuts Consumption in Relation to Depression and Anxiety in Iranian Adults
Authors: Ahmad Esmaillzadeh, Javad Anjom-Shoae, Omid Sadeghi,
Abstract:
Background: Although considerable research has been devoted to the link between consumption of legume and nuts and metabolic abnormalities, few studies have examined legume and nuts consumption in relation to psychological disorders. Objective: The current study aimed to examine the association of legume and nuts consumption with depression, anxiety and psychological distress in Iranian adults. Methods: This cross-sectional study was carried out among 3172 adult participants aged 18-55 years. Assessment of legume and nuts consumption was conducted using a validated dish-based 106-item semi-quantitative food frequency questionnaire. The Iranian validated version of Hospital Anxiety and Depression Scale (HADS) was used to examine psychological health. Scores of 8 or more on either subscale in the questionnaire were considered to indicate the presence of depression or anxiety. Data on psychological distress were collected through the use of General Health Questionnaire (GHQ), in which the score of 4 or more was considered as having psychological distress. Results: Mean age of participants was 36.5±7.9 years. Compared with the lowest quintile, men in the highest quintile of legume and nuts consumption had lower odds of anxiety; such that after adjusting for potential confounding variables, men in the top quintile of legume and nuts consumption were 66% less likely to be anxious than those in the bottom quintile (OR: 0.34; 95% CI: 0.14-0.82). Such relationship was not observed among women. We failed to find any significant association between legume plus nuts consumption and depression or psychological distress after adjustment for potential confounders. Conclusion: We found that consumption of legume and nuts was associated with lower odds of anxiety in men, but not in women. No significant association was seen between consumption of legume and nuts and odds of depression or psychological disorder. Further prospective studies are required to confirm these findings.Keywords: anxiety, depression, legumes, nuts, psychological distress
Procedia PDF Downloads 18225444 Secure Multiparty Computations for Privacy Preserving Classifiers
Authors: M. Sumana, K. S. Hareesha
Abstract:
Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data
Procedia PDF Downloads 41225443 Dimensioning of Circuit Switched Networks by Using Simulation Code Based On Erlang (B) Formula
Authors: Ali Mustafa Elshawesh, Mohamed Abdulali
Abstract:
The paper presents an approach to dimension circuit switched networks and find the relationship between the parameters of the circuit switched networks on the condition of specific probability of call blocking. Our work is creating a Simulation code based on Erlang (B) formula to draw graphs which show two curves for each graph; one of simulation and the other of calculated. These curves represent the relationships between average number of calls and average call duration with the probability of call blocking. This simulation code facilitates to select the appropriate parameters for circuit switched networks.Keywords: Erlang B formula, call blocking, telephone system dimension, Markov model, link capacity
Procedia PDF Downloads 61425442 Women Academics' Insecure Identity at Work: A Millennials Phenomenon
Authors: Emmanouil Papavasileiou, Nikos Bozionelos, Liza Howe-Walsh, Sarah Turnbull
Abstract:
Purpose: The research focuses on women academics’ insecure identity at work and examines its link with generational identity. The aim is to enrich understanding of identities at work as a crucial attribute of managing academics in the context of the proliferation of managerialist controls of audit, accountability, monitoring, and performativity. Methodology: Positivist quantitative methodology was utilized. Data were collected from the Scientific Women's Academic Network (SWAN) Charter. Responses from 155 women academics based in the British Higher Education system were analysed. Findings: Analysis showed high prevalence of strong imposter feelings among participants, suggesting high insecurity at work among women academics in the United Kingdom. Generational identity was related to imposter feelings. In particular, Millennials scored significantly higher than the other generational groups. Research implications: The study shows that imposter feelings are variously manifested among the prevalent generations of women academics, while generational identity is a significant antecedent of such feelings. Research limitations: Caution should be exercised in generalizing the findings to national cultural contexts beyond the United Kingdom. Practical and social implications: Contrary to popular depictions of Millennials as self-centered, narcissistic, materialistic and demanding, women academics who are members of this generational group appear significantly more insecure than the preceding generations. Value: The study provides insightful understandings into women academics’ identity at work as a function of generational identity, and provides a fruitful avenue for further research within and beyond this gender group and profession.Keywords: academics, generational diversity, imposter feelings, United Kingdom, women, work identity
Procedia PDF Downloads 14725441 Contractors Perspective on Causes of Delays in Power Transmission Projects
Authors: Goutom K. Pall
Abstract:
At the very heart of the power system, power transmission (PT) acts as an essential link between power generation and distribution. Timely completion of PT infrastructures is therefore crucial to support the development of power system as a whole. Yet despite the importance, studies on PT infrastructure development projects are embryonic and, hence, PT projects undergoing widespread delays worldwide. These delay factors are idiosyncratic and identifying the critical delay factors is essential if the PT industry professionals are to complete their projects efficiently and within the expected timeframes. This study identifies and categorizes 46 causes of PT project delay under ten major groups using six sector expert’s recommendations studied by a preliminary questionnaire survey. Based on the experts’ strong recommendations, two new groups are introduced in the final questionnaire survey: sector specific factors (SSF) and general factors (GF). SSF pertain to delay factors applicable only to the PT projects, while GF represents less biased samples with shared responsibilities of all project parties involved in a project. The study then uses 112 data samples from the contractors to rank the delay factors using relative importance index (RII). The results reveal that SSF, GF and external factors are the most critical groups, while the highest ranked delay factors include the right of way (RoW) problems of transmission lines (TL), delay in payments, frequent changes in TL routes, poor communication and coordination among the project parties and accessibility to TL tower locations. Finally, recommendations are made to minimize the identified delay. The findings are expected to be of substantial benefit to professionals in minimizing time overrun in PT projects implementation, as well as power generation, power distribution, and non-power linear construction projects worldwide.Keywords: delay, project delay, power transmission projects, time-overruns
Procedia PDF Downloads 17925440 Computational Fluid Dynamics Study of the Effects of Mechanical Forces in Cerebral Aneurysms
Authors: Hashem Al Argha
Abstract:
Cerebral Aneurysms are the ballooning and defect that occurs in the arteries of the brain. This ballooning might enlarge in size due to mechanical forces and could lead to rupture and death. Computational Fluid Dynamics has been used in the recent years in creating a link between engineering sciences and medical sciences. In this paper, the effects of mechanical forces on cerebral aneurysms will be studied. Results of this study show that mechanical forces could lead to rupture of the aneurysm and could lead to death. High mechanical forces including stresses up to 1.7 MPa could pop aneurysms and lead to a brain hemorrhage.Keywords: computational fluid dynamics, numerical, aneurysm, mechanical forces
Procedia PDF Downloads 25625439 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: software metrics, fault prediction, cross project, within project.
Procedia PDF Downloads 34425438 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region
Authors: Monica Plechero
Abstract:
Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region
Procedia PDF Downloads 23125437 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.Keywords: emotion recognition, facial recognition, signal processing, machine learning
Procedia PDF Downloads 31725436 First Order Reversal Curve Method for Characterization of Magnetic Nanostructures
Authors: Bashara Want
Abstract:
One of the key factors limiting the performance of magnetic memory is that the coercivity has a distribution with finite width, and the reversal starts at the weakest link in the distribution. So one must first know the distribution of coercivities in order to learn how to reduce the width of distribution and increase the coercivity field to obtain a system with narrow width. First Order Reversal Curve (FORC) method characterizes a system with hysteresis via the distribution of local coercivities and, in addition, the local interaction field. The method is more versatile than usual conventional major hysteresis loops that give only the statistical behaviour of the magnetic system. The FORC method will be presented and discussed at the conference.Keywords: magnetic materials, hysteresis, first-order reversal curve method, nanostructures
Procedia PDF Downloads 8225435 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels
Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur
Abstract:
With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography
Procedia PDF Downloads 12425434 Text Mining Techniques for Prioritizing Pathogenic Mutations in Protein Families Known to Misfold or Aggregate
Authors: Khaleel Saleh Al-Rababah
Abstract:
Amyloid fibril forming regions, which are known as protein aggregates, in sequences of some protein families are associated with a number of diseases known as amyloidosis. Mutations play a role in forming fibrils by accelerating the fibril formation process. In this paper we want to extract diseases that caused by those mutations as a result of the impact of the mutations on structural and functional properties of the aggregated protein. We propose a text mining system, to automatically extract mutations, diseases and relations between mutations and diseases. We presented an algorithm based on finite state to cluster mutations found in the same sentence as a sentence could contain different mutation cause different diseases. Also, we presented a co reference algorithm that enables cross-link sentences.Keywords: amyloid, amyloidosis, co reference, protein, text mining
Procedia PDF Downloads 52625433 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 64825432 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar
Procedia PDF Downloads 16425431 Environmental Impacts on Urban Agriculture in Algiers
Authors: Sara Bouzekri, Said Madani
Abstract:
In many Mediterranean cities such as Algiers, the human activity, the strong mobility the urban sprawl, the air pollution, the problems of waste management, the wasting of the resources and the degradation of the environment weaken in an unquestionable way the farming. The question of sustainable action vis-a-vis these threats arises then in order to maintain a level of desired local development. The methodology is based on a multi-criteria method based on the AFOM diagnosis, which classifies agricultural strength indicators and those of threat, according to an analytical approach. In a sustainable development perspective, it will be appropriate to link the threat factors of the case study with the factors of climate change to see their impact on the future of agriculture. This will be accompanied by a SWOT analysis, which crosses the most significant criteria to arrive at the necessary recommendations based on future projects for urban agriculture.Keywords: Algiers, environment, urban agriculture, threat factors
Procedia PDF Downloads 30025430 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: data fusion, Dempster-Shafer theory, data mining, event detection
Procedia PDF Downloads 41125429 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016
Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi
Abstract:
This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.Keywords: big health data, data subject rights, GDPR, pandemic
Procedia PDF Downloads 12925428 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems
Authors: Yong-Kyu Jung
Abstract:
The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity
Procedia PDF Downloads 8025427 Sustainability as a Platform in Microfinance Industry for Developing Countries
Authors: Nor Azlina Ab.Rahman, Salwana Hassan, Zuraeda Ibrahim, Normah Omar, Jamaliah Said
Abstract:
Revolution in the business environment has crucial growing changes on most globalized markets. Numerous of organizations are necessitating towards producing more proactive entrepreneurs with a dynamic teams, who can run and steer their business to victory. Revolutionizing on business strategy and entrepreneurial skills, also implementing innovation and practices to enhance its performance is necessary for these organizations to be more cost-efficient and increase their efficiency. The study aims to clarify issues of whether measurement has a positive effect on different aspects of innovation and best practices. The study contributes to the current understanding in three ways; first by presenting the important aspects of organizational innovation and best practices. Second by showing the importance of measurement in promoting different aspects of innovation and best practices. Third is to examine the link between innovation, best practices and sustainability in microfinance. The study has been executed by conducting a qualitative study toward the microfinance industry. A representative of management and employees in each company was selected through an invitation to participate in getting information for data collection purpose in the study. The study contains a comprehensive description of the impacts of measurement on different aspects of innovation and best practices towards sustainability in both microfinance industries and SMEs. Findings from this study shows that performance measurement has positive effects on issues related to innovation and best practices. The measurement for several aspects of innovation and best practices is good potential in microfinance industries. Additionally, measurement on innovation and best practices shows a positively related with each other to enhance organization performance. The study suggests that both academics and practitioners should focus on the development of new methods and practices to describe and scrutinize further understanding for measuring issues which is related to innovation and best practices, in order to better develop innovation and best practices towards sustainability. This effort would not only contribute to firm’s success, but also toward the development of the nation in the developing countries.Keywords: best practices, innovation, microfinance, sustainability
Procedia PDF Downloads 52225426 Air Pollution: The Journey from Single Particle Characterization to in vitro Fate
Authors: S. Potgieter-Vermaak, N. Bain, A. Brown, K. Shaw
Abstract:
It is well-known from public news media that air pollution is a health hazard and is responsible for early deaths. The quantification of the relationship between air quality and health is a probing question not easily answered. It is known that airborne particulate matter (APM) <2.5µm deposits in the tracheal and alveoli zones and our research probes the possibility of quantifying pulmonary injury by linking reactive oxygen species (ROS) in these particles to DNA damage. Currently, APM mass concentration is linked to early deaths and limited studies probe the influence of other properties on human health. To predict the full extent and type of impact, particles need to be characterised for chemical composition and structure. APMs are routinely analysed for their bulk composition, but of late analysis on a micro level probing single particle character, using micro-analytical techniques, are considered. The latter, single particle analysis (SPA), permits one to obtain detailed information on chemical character from nano- to micron-sized particles. This paper aims to provide a snapshot of studies using data obtained from chemical characterisation and its link with in-vitro studies to inform on personal health risks. For this purpose, two studies will be compared, namely, the bioaccessibility of the inhalable fraction of urban road dust versus total suspended solids (TSP) collected in the same urban environment. The significant influence of metals such as Cu and Fe in TSP on DNA damage is illustrated. The speciation of Hg (determined by SPA) in different urban environments proved to dictate its bioaccessibility in artificial lung fluids rather than its concentration.Keywords: air pollution, human health, in-vitro studies, particulate matter
Procedia PDF Downloads 22725425 Patterns of Associations between Child Maltreatment, Maternal Childhood Adversity, and Maternal Mental Well-Being: A Cross-Sectional Study in Tirana, Albania
Authors: Klea Ramaj
Abstract:
Objectives: There have recently been increasing calls to better understand the intergenerational transmission of adverse childhood experiences (ACEs). In particular, little is known about the links between maternal (ACEs), maternal stress, maternal depression, and child abuse against toddlers in countries in South-East Europe. This paper, therefore, aims to present new descriptive data on the epidemiology of maternal mental well-being and maternal ACEs in the capital of Albania, Tirana. It also aims to advance our understanding of the overlap between maternal stress, maternal depression, maternal exposure to ACEs, and child abuse toward two-to-three-year-old. Methods: This is a cross-sectional study conducted with a representative sample of 328 mothers of two-to-three-year-olds, recruited through public nurseries located in 8 diverse socio-economic and geographical areas in Tirana, Albania. Maternal stress was measured through the perceived stress scale (α = 0.78); maternal depression was measured via the patient health questionnaire (α = 0.77); maternal exposure to ACEs was captured via the ACEs international questionnaire (α = 0.77); and child maltreatment was captured via ISPCAN ICAST-P (α = 0.66). The main outcome examined here will be child maltreatment. The paper will first present estimates of maternal stress, depression, and child maltreatment by demographic groups. It will then use multiple regression to examine associations between child maltreatment and risk factors in the domains of maternal stress, maternal depression, and maternal ACEs. Results: Mothers' mean age was 32.3 (SD = 4.24), 87.5% were married, 51% had one child, and 83.5% had completed higher education. Analyses show high levels of stress and exposure to childhood adversity among mothers in Tirana. 97.5% of mothers perceived stress during the last month, and 89% had experienced at least one childhood adversity as measured by the ACE questionnaire, with 20.2% having experienced 4+ ACEs. Analyses show significant positive associations between maternal ACEs and maternal stress r(325) = 0.25, p = 0.00. Mothers with a high number of ACEs were more likely to abuse their children r(327) = .43, p = 0.00. 32% of mothers have used physical discipline with their 2–3-year-old, 84% have used psychological discipline, and 35% have neglected their toddler at least once or twice. The mothers’ depression levels were also positively and significantly associated with child maltreatment r(327) = .34, p = 0.00. Conclusions: This study provides cross-sectional data on the link between maternal exposure to early adversity, maternal mental well-being, and child maltreatment within the context of Tirana, Albania. The results highlight the importance of establishing policies that encourage maternal support, positive parenting, and family well-being in order to help break the cycle of transgenerational violence.Keywords: child maltreatment, maternal mental well-being, intergenerational abuse, Tirana, Albania
Procedia PDF Downloads 12625424 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization
Procedia PDF Downloads 311