Search results for: handwritten word recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2428

Search results for: handwritten word recognition

1858 Phonological Variation in the Speech of Grade 1 Teachers in Select Public Elementary Schools in the Philippines

Authors: M. Leonora D. Guerrero

Abstract:

The study attempted to uncover the most and least frequent phonological variation evident in the speech patterns of grade 1 teachers in select public elementary schools in the Philippines. It also determined the lectal description of the participants based on Tayao’s consonant charts for American and Philippine English. Descriptive method was utilized. A total of 24 grade 1 teachers participated in the study. The instrument used was word list. Each column in the word list is represented by words with the target consonant phonemes: labiodental fricatives f/ and /v/ and lingua-alveolar fricative /z/. These phonemes were in the initial, medial, and final positions, respectively. Findings of the study revealed that the most frequent variation happened when the participants read words with /z/ in the final position while the least frequent variation happened when the participants read words with /z/ in the initial position. The study likewise proved that the grade 1 teachers exhibited the segmental features of both the mesolect and basilect. Based on these results, it is suggested that teachers of English in the Philippines must aspire to manifest the features of the mesolect, if not, the acrolect since it is expected of the academicians not to be displaying the phonological features of the acrolects since this variety is only used by the 'uneducated.' This is especially so with grade 1 teachers who are often mimicked by their students who classify their speech as the 'standard.'

Keywords: consonant phonemes, lectal description, Philippine English, phonological variation

Procedia PDF Downloads 215
1857 Attitudes, Knowledge and Perceptions towards Cervical Cancer Messages among Female University Students

Authors: Anne Nattembo

Abstract:

Cervical cancer remains a major public health problem in developing countries, especially in Africa. Effective cervical cancer prevention communication requires identification of behaviors, attitudes and increasing awareness of a given population; thus this study focused on investigating awareness, attitudes, and behavior among female university students towards cervical cancer messages. The study objectives sought to investigate the communication behavior of young adults towards cervical cancer, to understand female students recognition of cervical cancer as a problem, to identify the frames related to cervical cancer and their impact towards audience communication and participation behaviors, to identify the factors that influence behavioral intentions and level of involvement towards cervical cancer services and to make recommendations on how to improve cervical cancer communication towards female university students. The researcher obtained data using semi-structured interviews and focus group discussions targeting 90 respondents. The semi-structured in-depth interviews were carried out through one-on-one discussions basis using a set of prepared questions among 53 respondents. All interviews were audio-tape recorded. Each interview was directly typed into Microsoft Word. 4 focus group discussions were conducted with a total of 37 respondents; 2 female only groups with 10 respondents in one and 9 respondents in another, 1 mixed with 12 participants 5 of whom were male, and 1 male only group with 6 participants. The key findings show that the participants preferred to receive and access cervical cancer information from doctors although they were mainly receiving information from the radio. In regards to the type of public the respondents represent, majority of the respondents were non-publics in the sense that they did not have knowledge about cervical cancer, had low levels of involvement and had high constraint recognition their cervical cancer knowledge levels. The researcher identified the most salient audience frames among female university students towards cervical cancer and these included; death, loss, and fear. These frames did not necessarily make cervical cancer an issue of concern among the female university students but rather an issue they distanced themselves from as they did not perceive it as a risk. The study also identified the constraints respondents face in responding to cervical cancer campaign calls-to-action which included; stigma, lack of knowledge and access to services as well as lack of recommendation from doctors. In regards to sex differences, females had more knowledge about cervical cancer than the males. In conclusion the study highlights the importance of interpersonal communication in risk or health communication with a focus on health providers proactively sharing cervical cancer prevention information with their patients. Health provider’s involvement in cervical cancer is very important in influencing behavior and compliance of cervical cancer calls-to-action. The study also provides recommendations for designing effective cervical cancer campaigns that will positively impact on the audience such as packaging cervical cancer messages that also target the males as a way of increasing their involvement and more campaigns to increase awareness of cervical cancer as well as designing positive framed messages to counter the negative audience frames towards cervical cancer.

Keywords: cervical cancer communication, health communication, university students, risk communication

Procedia PDF Downloads 234
1856 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 450
1855 The Processing of Context-Dependent and Context-Independent Scalar Implicatures

Authors: Liu Jia’nan

Abstract:

The default accounts hold the view that there exists a kind of scalar implicature which can be processed without context and own a psychological privilege over other scalar implicatures which depend on context. In contrast, the Relevance Theorist regards context as a must because all the scalar implicatures have to meet the need of relevance in discourse. However, in Katsos, the experimental results showed: Although quantitatively the adults rejected under-informative utterance with lexical scales (context-independent) and the ad hoc scales (context-dependent) at almost the same rate, adults still regarded the violation of utterance with lexical scales much more severe than with ad hoc scales. Neither default account nor Relevance Theory can fully explain this result. Thus, there are two questionable points to this result: (1) Is it possible that the strange discrepancy is due to other factors instead of the generation of scalar implicature? (2) Are the ad hoc scales truly formed under the possible influence from mental context? Do the participants generate scalar implicatures with ad hoc scales instead of just comparing semantic difference among target objects in the under- informative utterance? In my Experiment 1, the question (1) will be answered by repetition of Experiment 1 by Katsos. Test materials will be showed by PowerPoint in the form of pictures, and each procedure will be done under the guidance of a tester in a quiet room. Our Experiment 2 is intended to answer question (2). The test material of picture will be transformed into the literal words in DMDX and the target sentence will be showed word-by-word to participants in the soundproof room in our lab. Reading time of target parts, i.e. words containing scalar implicatures, will be recorded. We presume that in the group with lexical scale, standardized pragmatically mental context would help generate scalar implicature once the scalar word occurs, which will make the participants hope the upcoming words to be informative. Thus if the new input after scalar word is under-informative, more time will be cost for the extra semantic processing. However, in the group with ad hoc scale, scalar implicature may hardly be generated without the support from fixed mental context of scale. Thus, whether the new input is informative or not does not matter at all, and the reading time of target parts will be the same in informative and under-informative utterances. People’s mind may be a dynamic system, in which lots of factors would co-occur. If Katsos’ experimental result is reliable, will it shed light on the interplay of default accounts and context factors in scalar implicature processing? We might be able to assume, based on our experiments, that one single dominant processing paradigm may not be plausible. Furthermore, in the processing of scalar implicature, the semantic interpretation and the pragmatic interpretation may be made in a dynamic interplay in the mind. As to the lexical scale, the pragmatic reading may prevail over the semantic reading because of its greater exposure in daily language use, which may also lead the possible default or standardized paradigm override the role of context. However, those objects in ad hoc scale are not usually treated as scalar membership in mental context, and thus lexical-semantic association of the objects may prevent their pragmatic reading from generating scalar implicature. Only when the sufficient contextual factors are highlighted, can the pragmatic reading get privilege and generate scalar implicature.

Keywords: scalar implicature, ad hoc scale, dynamic interplay, default account, Mandarin Chinese processing

Procedia PDF Downloads 324
1854 From Faces to Feelings: Exploring Emotional Contagion and Empathic Accuracy through the Enfacement Illusion

Authors: Ilenia Lanni, Claudia Del Gatto, Allegra Indraccolo, Riccardo Brunetti

Abstract:

Empathy represents a multifaceted construct encompassing affective and cognitive components. Among these, empathic accuracy—defined as the ability to accurately infer another person’s emotions or mental state—plays a pivotal role in fostering empathetic understanding. Emotional contagion, the automatic process through which individuals mimic and synchronize facial expressions, vocalizations, and postures, is considered a foundational mechanism for empathy. This embodied simulation enables shared emotional experiences and facilitates the recognition of others’ emotional states, forming the basis of empathic accuracy. Facial mimicry, an integral part of emotional contagion, creates a physical and emotional resonance with others, underscoring its potential role in enhancing empathic understanding. Building on these findings, the present study explores how manipulating emotional contagion through the enfacement illusion impacts empathic accuracy, particularly in the recognition of complex emotional expressions. The enfacement illusion was implemented as a visuo-tactile multisensory manipulation, during which participants experienced synchronous and spatially congruent tactile stimulation on their own face while observing the same stimulation being applied to another person’s face. This manipulation enhances facial mimicry, which is hypothesized to play a key role in improving empathic accuracy. Following the enfacement illusion, participants completed a modified version of the Diagnostic Analysis of Nonverbal Accuracy–Form 2 (DANVA2-AF). The task included 48 images of adult faces expressing happiness, sadness, or morphed emotions blending neutral with happiness or sadness to increase recognition difficulty. These images featured both familiar and unfamiliar faces, with familiar faces belonging to the actors involved in the prior visuo-tactile stimulation. Participants were required to identify the target’s emotional state as either "happy" or "sad," with response accuracy and reaction times recorded. Results from this study indicate that emotional contagion, as manipulated through the enfacement illusion, significantly enhances empathic accuracy, particularly for the recognition of happiness. Participants demonstrated greater accuracy and faster response times in identifying happiness when viewing familiar faces compared to unfamiliar ones. These findings suggest that the enfacement illusion strengthens emotional resonance and facilitates the processing of positive emotions, which are inherently more likely to be shared and mimicked. Conversely, for the recognition of sadness, an opposite but non-significant trend was observed. Specifically, participants were slightly faster at recognizing sadness in unfamiliar faces compared to familiar ones. This pattern suggests potential differences in how positive and negative emotions are processed within the context of facial mimicry and emotional contagion, warranting further investigation. These results provide insights into the role of facial mimicry in emotional contagion and its selective impact on empathic accuracy. This study highlights how the enfacement illusion can precisely modulate the recognition of specific emotions, offering a deeper understanding of the mechanisms underlying empathy.

Keywords: empathy, emotional contagion, enfacement illusion, emotion recognition

Procedia PDF Downloads 12
1853 English Pashto Contact: Morphological Adaptation of Bilingual Compound Words in Pashto

Authors: Imran Ullah Imran

Abstract:

Language contact is a familiar concept in the present global world. Across the globe, languages get mixed up at different levels. Borrowing, code-switching are some of the means through which languages interact. This study examines Pashto-English contact at word and syllable levels. By recording the speech of 30 Pashto native speakers, selected via 'social network' sampling, the study located a number of Pashto-English compound words, which is a unique contact of its kind. In data analysis, tokens were categorized on the basis of their pattern and morphological structure. The study shows that Pashto-English Bilingual Compound words (BCWs) are very prevalent in the Pashto language. The study also found that the BCWs in Pashto are completely productive and have their own meanings. It also shows that the dominant pattern of hybrid words in Pashto is the conjugation of an independent English root word followed by a Pashto inflectional morpheme, which contributes to the core semantic content of the construction. The BCWs construction shows that how both the languages are closer to each other. Pashto-English contact results into bilingual compound and hybrid words, which forms a considerable number of tokens in the present-day spoken Pashto. On the basis of these findings, the study assumes that the same phenomenon may increase with the passage of time that would, in turn, result in the formation of more bilingual compound or hybrid words.

Keywords: code-mixing, bilingual compound words, pashto-english contact, hybrid words, inflectional lexical morpheme

Procedia PDF Downloads 250
1852 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 154
1851 Effect of Phonological Complexity in Children with Specific Language Impairment

Authors: Irfana M., Priyandi Kabasi

Abstract:

Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli.

Keywords: coarticulation, minimal contrast, phonological complexity, specific language impairment

Procedia PDF Downloads 144
1850 Cultural Disposition and Implicit Dehumanization of Sexualized Females by Women

Authors: Hong Im Shin

Abstract:

Previous research demonstrated that self-objectification (women view themselves as objects for use) is related to system-justification. Three studies investigated whether cultural disposition as its system-justifying function could have an impact on self-objectification and dehumanization of sexualized women and men. Study 1 (N = 91) employed a survey methodology to examine the relationship between cultural disposition (collectivism vs. individualism), trait of system-justification, and self-objectification. The results showed that the higher tendency of collectivism was related to stronger system-justification and self-objectification. Study 2 (N = 60 females) introduced a single category implicit association task (SC-IAT) to assess the extent to which sexually objectified women were associated with uniquely human attributes (i.e., culture) compared to animal-related attributes (i.e., nature). According to results, female participants associated sexually objectified female targets less with human attributes compared to animal-related attributes. Study 3 (N = 46) investigated whether priming to individualism or collectivism was associated to system justification and sexual objectification of men and women with the use of a recognition task involving upright and inverted pictures of sexualized women and men. The results indicated that the female participants primed to individualism showed an inversion effect for sexualized women and men (person-like recognition), whereas there was no inversion effect for sexualized women in the priming condition of collectivism (object-like recognition). This implies that cultural disposition plays a mediating role for rationalizing the gender status, implicit dehumanization of sexualized females and self-objectification. Future research directions are discussed.

Keywords: cultural disposition, dehumanization, implicit test, self-objectification

Procedia PDF Downloads 239
1849 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 356
1848 Blade Runner and Slavery in the 21st Century

Authors: Bülent Diken

Abstract:

This paper looks to set Ridley Scott’s original film Blade Runner (1982) and Denis Villeneuve’s Blade Runner 2049 (2017) in order to provide an analysis of both films with respect to the new configurations of slavery in the 21st century. Both Blade Runner films present a de-politicized society that oscillates between two extremes: the spectral (the eye, optics, digital communications) and the biopolitical (the body, haptics). On the one hand, recognizing the subject only as a sign, the society of the spectacle registers, identifies, produces and reproduces the subject as a code. At the same time, though, the subject is constantly reduced to a naked body, to bare life, for biometric technologies to scan it as a biological body or body parts. Being simultaneously a pure code (word without body) and an instrument slave (body without word), the replicants are thus the paradigmatic subjects of this society. The paper focuses first on the similarity: both films depict a relationship between masters and slaves, that is, a despotic relationship. The master uses the (body of the) slave as an instrument, as an extension of his own body. Blade Runner 2019 frames the despotic relation in this classical way through its triangulation with the economy (the Tyrell Corporation) and the slave-replicants’ dissent (rejecting their reduction to mere instruments). In a counter-classical approach, in Blade Runner 2049, the focus shifts to another triangulation: despotism, economy (the Wallace Corporation) and consent (of replicants who no longer perceive themselves as slaves).

Keywords: Blade Runner, the spectacle, bio-politics, slavery, imstrumentalisation

Procedia PDF Downloads 69
1847 Biosignal Recognition for Personal Identification

Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor

Abstract:

A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.

Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification

Procedia PDF Downloads 280
1846 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 219
1845 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 48
1844 Duration Patterns of English by Native British Speakers and Mandarin ESL Speakers

Authors: Chen Bingru

Abstract:

This study is intended to describe and analyze the effects of polysyllabic shortening and word or phrase boundary on the duration patterns of spoken utterances by Mandarin learners of English in comparison with native speakers of English. To investigate the relative contribution of these effects, two production experiments were conducted. The study included 11 native British English speakers and 20 Mandarin learners of English who were asked to produce four sets of tokens consisting of a mono-syllabic base form, disyllabic, and trisyllabic words derived from the base by the addition of suffixes, and a set of short sentences with a particular combination of phrase size, stress pattern, and boundary location. The duration of words and segments was measured, and results from the data analysis suggest that the amount of polysyllabic shortening and the effect of word or phrase position are likely to affect a Chinese accent for Mandarin ESL speakers. This study sheds light on research on the duration patterns of language by demonstrating the effect of duration-related factors on the foreign accent of Mandarin ESL speakers. It can also benefit both L2 learners and language teachers by increasing their sensitivity to the duration differences and difficulties experienced by L2 learners of English. An understanding of the amount of polysyllabic shortening and the effect of position in words and phrase on syllable duration can also facilitate L2 teachers to establish priorities for teaching pronunciation to ESL learners.

Keywords: duration patterns, Chinese accent, Mandarin ESL speakers, polysyllabic shortening

Procedia PDF Downloads 139
1843 The Automatisation of Dictionary-Based Annotation in a Parallel Corpus of Old English

Authors: Ana Elvira Ojanguren Lopez, Javier Martin Arista

Abstract:

The aims of this paper are to present the automatisation procedure adopted in the implementation of a parallel corpus of Old English, as well as, to assess the progress of automatisation with respect to tagging, annotation, and lemmatisation. The corpus consists of an aligned parallel text with word-for-word comparison Old English-English that provides the Old English segment with inflectional form tagging (gloss, lemma, category, and inflection) and lemma annotation (spelling, meaning, inflectional class, paradigm, word-formation and secondary sources). This parallel corpus is intended to fill a gap in the field of Old English, in which no parallel and/or lemmatised corpora are available, while the average amount of corpus annotation is low. With this background, this presentation has two main parts. The first part, which focuses on tagging and annotation, selects the layouts and fields of lexical databases that are relevant for these tasks. Most information used for the annotation of the corpus can be retrieved from the lexical and morphological database Nerthus and the database of secondary sources Freya. These are the sources of linguistic and metalinguistic information that will be used for the annotation of the lemmas of the corpus, including morphological and semantic aspects as well as the references to the secondary sources that deal with the lemmas in question. Although substantially adapted and re-interpreted, the lemmatised part of these databases draws on the standard dictionaries of Old English, including The Student's Dictionary of Anglo-Saxon, An Anglo-Saxon Dictionary, and A Concise Anglo-Saxon Dictionary. The second part of this paper deals with lemmatisation. It presents the lemmatiser Norna, which has been implemented on Filemaker software. It is based on a concordance and an index to the Dictionary of Old English Corpus, which comprises around three thousand texts and three million words. In its present state, the lemmatiser Norna can assign lemma to around 80% of textual forms on an automatic basis, by searching the index and the concordance for prefixes, stems and inflectional endings. The conclusions of this presentation insist on the limits of the automatisation of dictionary-based annotation in a parallel corpus. While the tagging and annotation are largely automatic even at the present stage, the automatisation of alignment is pending for future research. Lemmatisation and morphological tagging are expected to be fully automatic in the near future, once the database of secondary sources Freya and the lemmatiser Norna have been completed.

Keywords: corpus linguistics, historical linguistics, old English, parallel corpus

Procedia PDF Downloads 213
1842 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 71
1841 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 146
1840 Exploring the Use of Digital Tools for the Analysis and Interpretation of the Poems of Seamus Heaney

Authors: Ashok Sachdeva

Abstract:

This research paper delves into the application of digital tools, especially Voyant Tools and AntConc version 4.0, for the analysis and interpretation of Seamus Heaney's poems. Scholars and literary aficionados can acquire deeper insights into Heaney's writings by utilising these tools, revealing hidden nuances and improving their knowledge. This paper outlines the methodology used, presents sample analyses and evaluates the merits and limitations of using digital tools in literary analysis. The combination of traditional close reading with digital analysis tools promises to offer new paths for understanding Heaney's vast tapestry of poetry. Seamus Heaney, a Nobel winner known for his vivid poetry, provides a treasure mine of literary discovery. The advent of digital tools gives an exciting opportunity to reveal previously unknown layers of meaning within his works. This paper investigates the use of Voyant Tools and AntConc version 4.0 to analyse and understand Heaney's writings, demonstrating the symbiotic relationship between traditional literary analysis and cutting-edge digital methodologies. Methodology: To demonstrate the efficiency of digital tools in the analysis of Heaney's poetry, a sample of his notable works will be entered into Voyant Tools and AntConc version 4.0. The former provides a graphic representation of word frequency, word clouds, and patterns over numerous poems. The latter, a concordance tool, enables detailed linguistic analysis, revealing patterns, and linguistic subtleties.

Keywords: digital tools, resonance, assonance, alliteration, creative quotient

Procedia PDF Downloads 74
1839 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
1838 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System

Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha

Abstract:

Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.

Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone

Procedia PDF Downloads 692
1837 Modelling and Control of Binary Distillation Column

Authors: Narava Manose

Abstract:

Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.

Keywords: modelling, distillation column, control, binary distillation

Procedia PDF Downloads 279
1836 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 371
1835 Culture of Writing and Writing of Culture: Organizational Connections and Pedagogical Implications of ESL Writing in Multilingual Philippine Setting

Authors: Randy S. Magdaluyo, Lea M. Cabar, Jefferson Q. Correa

Abstract:

One recurring issue in ESL writing is the confusing differences in the writing conventions of the first language and the target language. Culture may play an intriguing role in specifying writing features and structures that ESL writers have to follow. Although writing is typically organized in a three-part structure with introduction, body, and conclusion, it is important to analyze the complex nature of ESL writing. This study investigated the organizational features and structures of argumentative essays written in English by thirty college ESL students from three linguistic backgrounds (Cebuano, Chavacao, and Tausug) in a Philippine university. The nature of word order and sentence construction in the students’ essays and the specific components of the introduction, body, and conclusion were quantitatively and qualitatively analyzed based on ESL writing models. Focus group discussions were also conducted to help clarify the possible influence of students’ first language on the ways their essays were conceptualized and organized. Results indicate that while there was no significant difference in the overall introduction, body, and conclusion in all essays, the sentence length was interestingly different for each linguistic group of ESL students, and the word order was notably inconsistent with the S-V-O pattern of the target language. The first language was also revealed to have a facilitative role in the cognitive translation process of these ESL students. As such, implications for a multicultural writing pedagogy was discussed and recommended considering both the students’ native resources in their first language and the ESL writing models in their target language.

Keywords: community funds of knowledge, contrastive rhetoric, ESL writing, multicultural writing pedagogy

Procedia PDF Downloads 141
1834 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining

Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.

Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture

Procedia PDF Downloads 283
1833 Multimodal Sentiment Analysis With Web Based Application

Authors: Shreyansh Singh, Afroz Ahmed

Abstract:

Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.

Keywords: sentiment analysis, RNN, LSTM, word embeddings

Procedia PDF Downloads 120
1832 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 176
1831 Ambisyllabic Conditioning in English: Evidence from the Accent of Nigerian Speakers of English

Authors: Nkereke Mfon Essien

Abstract:

In an ambisyllabic environment, one consonant sound simultaneously assumes both the coda and onset positions of a word due to its structural proclivity to affect two phonological processes or repair two ill-formed sequences in those syllable positions at the same time. This study sets out to examine the structural conditions that trigger this not-so-common phonological privilege for consonant sounds in the English language and Nigerian English and if such constraints could have any correspondence in the language studied. Data for the study were obtained from a native speaker of English who was the control and twenty (20) educated Nigerian speakers of English from the three ethnic/linguistic groups in Nigeria. Preliminary findings from the data show that ambisyllabicity in English is triggered mainly by stress, a condition which causes a consonant in a stressed syllable to become glottalised and simultaneously devoices the nearest voiced consonant in the next syllable. For example, in the word coupler,/'kʌplɜr/ is realized as ['kʌˀpl̥ɜr]. In some Nigerian English, preliminary findings show that ambisyllabicity is triggered by a sequence of intervocalic short, high central vowels and a coda nasal. Since the short vowel may not occur in an open syllable, the nasal serves to close the impermissible open syllable. However, since the Nigerian English foot structure does not permit a CVC.V syllable, the same coda nasal simultaneously repairs the impermissible syllable foot to (CV.CV) by applying the Maximal Onset Principle since this is a preliminary investigation, a conclusion would not suffice yet.

Keywords: ambisyllabicity, nasal, coda, stress, phonological process, syllable, foot

Procedia PDF Downloads 23
1830 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 392
1829 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 450