Search results for: groundwater potential zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13331

Search results for: groundwater potential zone

12761 Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight

Authors: Assel E. Molzhigitova, Amankeldi K. Sadanov, Elvira T. Ismailova, Kulyash A. Iskandarova, Olga N. Shemshura, Ainur I. Seitbattalova

Abstract:

Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study.

Keywords: antagonists, epiphytic bacteria, Erwinia amylovora, fire blight

Procedia PDF Downloads 168
12760 Geochemical and Spatial Distribution of Minerals in the Tailings of IFE/IJESA Gold Mine Zone, Nigeria

Authors: Oladejo S. O, Tomori W. B, Adebayo A. O

Abstract:

The main objective of this research is to identify the geochemical and mineralogical characteristics potential of unexplored tailings around the gold deposit region using spatial statistics and map modeling. Some physicochemical parameters such as pH, redox potential, electrical conductivity, cation exchange capacity, total organic carbon, total organic matter, residual humidity, Cation exchange capacity, and particle size were determined from both the mine drains and tailing samples using standard methods. The physicochemical parameters of tailings ranges obtained were pH (6.0 – 7.3), Eh (−16 - 95 Mev), EC (49 - 156 µS/cm), RH (0.20-2.60%), CEC (3.64-6.45 cmol/kg), TOC (3.57-18.62%), TOM (6.15-22.93%). The geochemical oxide composition were identified using Proton Induced X-ray emission and the results indicated that SiO2>Al2O3>Fe2O3>TiO2>K2O>MgO>CaO>Na2O> P2O5>MnO>Cr2O3>SrO>K2O>P2O5. The major mineralogical components in the tailing samples were determined by quantitative X-ray diffraction techniques using the Rietveld method. Geostatistical relationships among the known points were determined using ArcGIS 10.2 software to interpolate mineral concentration with respect to the study area. The Rietveld method gave a general Quartz value of 73.73-92.76%, IImenite as 0.38-4.77%, Kaolinite group as 3.19-20.83%, Muscovite as 0.77-11.70% with a trace of other minerals. The high percentage of quartz is an indication of a sandy environment with a loose binding site.

Keywords: tailings, geochemical, mineralogy, spatial

Procedia PDF Downloads 75
12759 Hydrothermal Alteration and Mineralization of Cisarua, Nanggung District, Bogor Regency, West Java, Indonesia

Authors: A. Asaga, N. I. Basuki

Abstract:

The research area is located in Cisarua, Bogor Regency, West Java, with 12,8 km2 wide. This area belongs to mining region of PT Aneka Tambang Tbk. The purpose of this research is to study geological condition, alteration type and pattern, and type of mineralization. Geomorphology of the research area is at young to mature stage, which can be divided into Ciparigi’s Parasite Volcanic Cone Unit, Ciparigi Caldera Valley Unit, Ciparigi Caldera Rim Hill Unit, and Pongkor Volcanic Hill. Stratigraphy of the research area consist of five units, they are Laharic Breccia (Pliocene), Pyroclastic Breccia, Lapilli Tuff, Flow Tuff, Fall Tuff, and Andesite Lava (Pleistocene). Based on mineral composition, it is interpreted that there is magma composition changing from rhyolite to andesitic. Geological structures in the research area are caused by NE-SW and N-S stress direction; they are Ciparay Right Strike-Slip Fault (Pliocene), Cisarua Right Strike-Slip Fault, G. Singa Left Strike-Slip Fault, and Cinyuncung Right Strike-Slip Fault (Pleistocene). Weak to strong hydrothermal alteration can be found in the research area.They are Chlorite ± Smectite ± Halloysite Zone, Smectite - Illite - Quartz Zone, Smectite - Kaolinite - Illite - Chlorite Zone, and Smectite - Chlorite - Calcite - Quartz Zone. The distribution and assemblage of alteration minerals is controlled by lithology and geological structures in Pleistocene. Mineralization produce ore minerals, those are pyrite, marcasite, chalcopyrite, sphalerite, galena, and chalcocite. There are calcite and quartz veins that show colloform, comb, and crystalline textures. Hydrothermal alteration assemblages, ore minerals, and cavity filling textures suggest that mineralization type in research area is epithermal low sulphidation.

Keywords: Pongkor, hydrothermal alteration, epithermal, geochemistry

Procedia PDF Downloads 396
12758 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit

Authors: James Killian, Sarah Cox

Abstract:

The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.

Keywords: FOS, SRF, LEM, comparison

Procedia PDF Downloads 312
12757 Spatial Planning Model on Landslide Risk Disaster at West Java Geothermal Field, Indonesia

Authors: Herawanti Kumalasari, Raldi Hendro Koestoer, Hayati Sari Hasibuan

Abstract:

Geographically, Indonesia is located in the arc of volcanoes that cause disaster prone one of them is landslide disaster. One of the causes of the landslide is the conversion of land from forest to agricultural land in upland areas and river border that has a steep slope. The study area is located in the highlands with fertile soil conditions, so most of the land is used as agricultural land and plantations. Land use transfer also occurs around the geothermal field in Pangalengan District, West Java Province which will threaten the sustainability of geothermal energy utilization and the safety of the community. The purpose of this research is to arrange the concept of spatial pattern arrangement in the geothermal area based on disaster mitigation. This research method using superimpose analysis. Superimpose analysis to know the basic physical condition of the planned area through the overlay of disaster risk map with the map of the plan of spatial plan pattern of Bandung Regency Spatial Plan. The results of the analysis will then be analyzed spatially. The results have shown that most of the study areas were at moderate risk level. Planning of spatial pattern of existing study area has not fully considering the spread of disaster risk that there are settlement area and the agricultural area which is in high landslide risk area. The concept of the arrangement of the spatial pattern of the study area will use zoning system which is divided into three zones namely core zone, buffer zone and development zone.

Keywords: spatial planning, geothermal, disaster risk, zoning

Procedia PDF Downloads 274
12756 Qualitative Phytochemical Screening and Antibacterial Evaluation of Sohphlang: Flemingia Vestita

Authors: J. K. D. M. P. Madara, R. B. L. Dharmawickreme, Linu John, Ivee Boiss

Abstract:

Flemingia vestita, commonly known as ‘Sohphlang’ is an important medicinal plant found in the North-Eastern region of India, which is traditionally recognized for its anthelmintic properties. This study was aimed to evaluate the phytochemical constituents and antibacterial activity of the tuber skin extracts of the plant species. Methanol, acetone, and water were used to obtain the solvent extractions of the skin peel extracts. Concentrated extracts of skin peel were tested using previously established qualitative phytochemical assays. The antibacterial efficacy of methanol tuber skin extract was tested against Gram-negative and positive microorganisms, namely, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Mycobacterium tuberculosis strains. Agar well diffusion method was employed to determine the zone of inhibition of the plant extracts. Obtained data were statistically analyzed. Methanol extracts of Flemingia vestita were found to be effective against Bacillus subtilis and Mycobacterium tuberculosis at concentrations of 0.5 mg/ml. The reported zone of inhibition for the two strains was 13.3mm ± 0.57 and 16.3mm ± 4.9, respectively. However Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were resistant to the plant extracts with no zone of inhibition. Alkaloids, glycosides, and phenols were found to be present in aqueous, methanol, and acetone extracts of the plant in qualitative phytochemical analysis.

Keywords: flemingia vestita, antibacterial activity, phytochemical screening, well diffusion method

Procedia PDF Downloads 110
12755 Delimitation of the Perimeters of PR Otection of the Wellfield in the City of Adrar, Sahara of Algeria through the Used Wyssling’s Method

Authors: Ferhati Ahmed, Fillali Ahmed, Oulhadj Younsi

Abstract:

delimitation of the perimeters of protection in the catchment area of the city of Adrar, which are established around the sites for the collection of water intended for human consumption of drinking water, with the objective of ensuring the preservation and reducing the risks of point and accidental pollution of the resource (Continental Intercalar groundwater of the Northern Sahara of Algeria). This wellfield is located in the northeast of the city of Adrar, it covers an area of 132.56 km2 with 21 Drinking Water Supply wells (DWS), pumping a total flow of approximately 13 Hm3/year. The choice of this wellfield is based on the favorable hydrodynamic characteristics and their location in relation to the agglomeration. The vulnerability to pollution of this slick is very high because the slick is free and suffers from the absence of a protective layer. In recent years, several factors have been introduced around the field that can affect the quality of this precious resource, including the presence of a strong centre for domestic waste and agricultural and industrial activities. Thus, its sustainability requires the implementation of protection perimeters. The objective of this study is to set up three protection perimeters: immediate, close and remote. The application of the Wyssling method makes it possible to calculate the transfer time (t) of a drop of groundwater located at any point in the aquifer up to the abstraction and thus to define isochrones which in turn delimit each type of perimeter, 40 days for the nearer and 100 days for the farther away. Special restrictions are imposed for all activities depending on the distance of the catchment. The application of this method to the Adrar city catchment field showed that the close and remote protection perimeters successively occupy areas of 51.14 km2 and 92.9 km2. Perimeters are delimited by geolocated markers, 40 and 46 markers successively. These results show that the areas defined as "near protection perimeter" are free from activities likely to present a risk to the quality of the water used. On the other hand, on the areas defined as "remote protection perimeter," there is some agricultural and industrial activities that may present an imminent risk. A rigorous control of these activities and the restriction of the type of products applied in industrial and agricultural is imperative.

Keywords: continental intercalaire, drinking water supply, groundwater, perimeter of protection, wyssling method

Procedia PDF Downloads 97
12754 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: cushion coarse-grained sediments (CCS), expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale

Procedia PDF Downloads 317
12753 Interactions between Water-Stress and VA Mycorrhizal Inoculation on Plant Growth and Leaf-Water Potential in Tomato

Authors: Parisa Alizadeh Oskuie, Shahram Baghban Ciruse

Abstract:

The influence of arbuscular mycorrhizal (AM) fungus(Glomus mossea) on plant growth and leaf-water potential of tomato (lycopersicum esculentum L.cv.super star) were studied in potted culture water stress stress period of 3 months in greenhouse conditions with the soil matric potential maintained at Fc1, Fc2, Fc3, and Fc4 respectively (0.8,0.7,0.6,0.5 Fc). Seven-day-old seedlings of tomato were transferred to pots containing Glomus mossea or non-AMF. AM colonization significantly stimulated shoot dry matter and leaf-water potential but water stress significantly decreased leaf area, shoot dry matter colonization and leaf-water potential.

Keywords: leaf-water potential, plant growth, tomato, VA mycorrhiza, water-stress

Procedia PDF Downloads 424
12752 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops

Authors: Vijay Shankar

Abstract:

In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.

Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity

Procedia PDF Downloads 332
12751 The Influence of Environmental Attributes on Children's Pedestrian-Crash Risk in School Zones

Authors: Jeongwoo Lee

Abstract:

Children are the most vulnerable travelers and they are at risk for pedestrian injury. Creating a safe route to school is important because walking to school is one of the main opportunities for promotion of needed physical exercise among children. This study examined how the built environmental attributes near an elementary school influence traffic accidents among school-aged children. The study used two complementary data sources including the locations of police-reported pedestrian crashes and the built environmental characteristics of school areas. The environmental attributes of road segments were collected through GIS measurements of local data and actual site audits using the inventory developed for measuring pedestrian-crash risk scores. The inventory data collected at 840 road segments near 32 elementary schools in the city of Ulsan. We observed all segments in a 300-meter-radius area from the entrance of an elementary school. Segments are street block faces. The inventory included 50 items, organized into four domains: accessibility (17items), pleasurability (11items), perceived safety from traffic (9items), and traffic and land-use measures (13items). Elementary schools were categorized into two groups based on the distribution of the pedestrian-crash hazard index scores. A high pedestrian-crash zone was defined as an school area within the eighth, ninth, and tenth deciles, while no pedestrian-crash zone was defined as a school zone with no pedestrian-crash accident among school-aged children between 2013 and 2016. No- and high pedestrian-crash zones were compared to determine whether different settings of the built environment near the school lead to a different rate of pedestrian-crash incidents. The results showed that a crash risk can be influenced by several environmental factors such as a shape of school-route, number of intersections, visibility and land-use in a street, and a type of sidewalk. The findings inform policy for creating safe routes to school to reduce the pedestrian-crash risk among children by focusing on school zones.

Keywords: active school travel, school zone, pedestrian crash, safety route to school

Procedia PDF Downloads 245
12750 Theoretical Approach for Estimating Transfer Length of Prestressing Strand in Pretensioned Concrete Members

Authors: Sun-Jin Han, Deuck Hang Lee, Hyo-Eun Joo, Hyun Kang, Kang Su Kim

Abstract:

In pretensioned concrete members, the transfer length region is existed, in which the stress in prestressing strand is developed due to the bond mechanism with surrounding concrete. The stress of strands in the transfer length zone is smaller than that in the strain plateau zone, so-called effective prestress, therefore the web-shear strength in transfer length region is smaller than that in the strain plateau zone. Although the transfer length is main key factor in the shear design, a few analytical researches have been conducted to investigate the transfer length. Therefore, in this study, a theoretical approach was used to estimate the transfer length. The bond stress developed between the strands and the surrounding concrete was quantitatively calculated by using the Thick-Walled Cylinder Model (TWCM), based on this, the transfer length of strands was calculated. To verify the proposed model, a total of 209 test results were collected from the previous studies. Consequently, the analysis results showed that the main influencing factors on the transfer length are the compressive strength of concrete, the cover thickness of concrete, the diameter of prestressing strand, and the magnitude of initial prestress. In addition, the proposed model predicted the transfer length of collected test specimens with high accuracy. Acknowledgement: This research was supported by a grant(17TBIP-C125047-01) from Technology Business Innovation Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: bond, Hoyer effect, prestressed concrete, prestressing strand, transfer length

Procedia PDF Downloads 298
12749 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration

Authors: Sujatha Edla

Abstract:

Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.

Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic

Procedia PDF Downloads 63
12748 Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana

Authors: Abdullah Ansari, Sinika Rambaran, Sirpaul Jaikishun

Abstract:

Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata.

Keywords: vermiwash, earthworms, soil, bacteria, alternaria alternata, antifungal, antibacterial

Procedia PDF Downloads 252
12747 Key Principles and Importance of Applied Geomorphological Maps for Engineering Structure Placement

Authors: Sahar Maleki, Reza Shahbazi, Nayere Sadat Bayat Ghiasi

Abstract:

Applied geomorphological maps are crucial tools in engineering, particularly for the placement of structures. These maps provide precise information about the terrain, including landforms, soil types, and geological features, which are essential for making informed decisions about construction sites. The importance of these maps is evident in risk assessment, as they help identify potential hazards such as landslides, erosion, and flooding, enabling better risk management. Additionally, these maps assist in selecting the most suitable locations for engineering projects. Cost efficiency is another significant benefit, as proper site selection and risk assessment can lead to substantial cost savings by avoiding unsuitable areas and minimizing the need for extensive ground modifications. Ensuring the maps are accurate and up-to-date is crucial for reliable decision-making. Detailed information about various geomorphological features is necessary to provide a comprehensive overview. Integrating geomorphological data with other environmental and engineering data to create a holistic view of the site is one of the most fundamental steps in engineering. In summary, the preparation of applied geomorphological maps is a vital step in the planning and execution of engineering projects, ensuring safety, efficiency, and sustainability. In the Geological Survey of Iran, the preparation of these applied maps has enabled the identification and recognition of areas prone to geological hazards such as landslides, subsidence, earthquakes, and more. Additionally, areas with problematic soils, potential groundwater zones, and safe construction sites are identified and made available to the public.

Keywords: geomorphological maps, geohazards, risk assessment, decision-making

Procedia PDF Downloads 26
12746 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids

Authors: Jiancheng Zheng

Abstract:

When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.

Keywords: metal, colloid, groundwater, mobility, fractionation, sorption

Procedia PDF Downloads 363
12745 Petrogenesis of the Neoproterozoic Rocks of Megele Area, Asosa, Western Ethiopia

Authors: Temesgen Oljira, Olugbenga Akindeji Okunlola, Akinade Shadrach Olatunji, Dereje Ayalew, Bekele Ayele Bedada

Abstract:

The Western Ethiopian Shield (WES) is underlain by volcano-sedimentary terranes, gneissic terranes, and ophiolitic rocks intruded by different granitoid bodies. For the past few years, Neoproterozoic rocks of the Megele area in the western part of the WES have been explored. Understanding the geology of the area and assessing the mineralized area's economic potential requires petrological, geochemical, and geological characterization of the Neoproterozoic granitoids and associated metavolcanic rocks. Thus, the geological, geochemical, and petrogenetic features of Neoproterozoic granitoids and associated metavolcanic rocks were elucidated using a combination of field mapping, petrological, and geochemical study. The Megele area is part of a low-grade volcano-sedimentary zone that has been intruded by mafic (dolerite dyke) and granitoid intrusions (granodiorite, diorite, granite gneiss). The granodiorite, associated diorite, and granite gneiss are calc-alkaline, peraluminous to slightly metaluminous, S-type granitoids formed in volcanic arc subduction (VAG) to syn-collisional (syn-COLD) tectonic setting by fractionation of LREE-enriched, HREE-depleted basaltic magma with considerable crustal input. While the metabasalt is sub-alkaline (tholeiitic), metaluminous bodies are generated at the mid-oceanic ridge tectonic setting by partially melting HREE-depleted and LREE-enriched basaltic magma. The reworking of sediment-loaded crustal blocks at depth in a subduction zone resulted in the production of S-type granitoids. This basaltic magma was supplied from an LREE-enriched, HREE-depleted mantle.

Keywords: fractional crystallization, geochemistry, Megele, petrogenesis, s-type granite

Procedia PDF Downloads 131
12744 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 18
12743 Graded Orientation of the Linear Polymers

Authors: Levan Nadareishvili, Roland Bakuradze, Barbara Kilosanidze, Nona Topuridze, Liana Sharashidze, Ineza Pavlenishvili

Abstract:

Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.

Keywords: controlled graded stretching, gradually oriented state, linear polymers, zone stretching device

Procedia PDF Downloads 437
12742 The Effect of Perceived Environmental Uncertainty on Corporate Entrepreneurship Performance: A Field Study in a Large Industrial Zone in Turkey

Authors: Adem Öğüt, M. Tahir Demirsel

Abstract:

Rapid changes and developments today, besides the opportunities and facilities they offer to the organization, may also be a source of danger and difficulties due to the uncertainty. In order to take advantage of opportunities and to take the necessary measures against possible uncertainties, organizations must always follow the changes and developments that occur in the business environment and develop flexible structures and strategies for the alternative cases. Perceived environmental uncertainty is an outcome of managers’ perceptions of the combined complexity, instability and unpredictability in the organizational environment. An environment that is perceived to be complex, changing rapidly, and difficult to predict creates high levels of uncertainty about the appropriate organizational responses to external circumstances. In an uncertain and complex environment, organizations experiencing cutthroat competition may be successful by developing their corporate entrepreneurial ability. Corporate entrepreneurship is a process that includes many elements such as innovation, creating new business, renewal, risk-taking and being predictive. Successful corporate entrepreneurship is a critical factor which has a significant contribution to gain a sustainable competitive advantage, to renew the organization and to adapt the environment. In this context, the objective of this study is to investigate the effect of perceived environmental uncertainty of managers on corporate entrepreneurship performance. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). According to the results, it has been observed that there is a positive statistically significant relationship between perceived environmental uncertainty and corporate entrepreneurial activities.

Keywords: corporate entrepreneurship, entrepreneurship, industrial zone, perceived environmental uncertainty, uncertainty

Procedia PDF Downloads 314
12741 Antibacterial Activity of Methanol Extract of Punica Granatum Linn. (Punnicaceae) Fruit Peel Against Selected Bacterial Species

Authors: Afzan Mahmad, Santibuana Abd Rahman, Gouri Kumar Dash, Mohd. Syafiq Bin Abdullah

Abstract:

Antibacterial activity of the methanol extract of fruit peel of Punica granatum Linn (Family: Punicaceae) was evaluated against two Gram positive and two Gram negative bacteria. The Gram positive bacteria included Staphylococcus aureus, Streptococcus pneumoniae and the Gram negative organisms included Escherichia coli and Pseudomonas aeruginosa respectively. The culture media used for antibacterial assay was Mueller Hinton agar for the growth of S. aureus, E. coli, and P. aeruginosa. The media used for the growth of S. pneumoniae was Mueller Hinton blood agar. The antibacterial assay was performed through Disc diffusion technique. The methanol extract was tested at three different concentrations (50, 100 and 200 mg/ml). Standard antibiotic discs containing vancomycin (30 μg) for S. pneumoniae, penicillin (10 units) for S. aureus, ceftriaxone (30 μg) for E. coli and ciprofloxacin (5 μg) for P. aeruginosa were used for the activity comparison. The results of the study revealed that the extract possesses antibacterial activity against S. aureus, S. pneumoniae and P. aeruginosa at all tested concentrations. The maximum zone of inhibition of 19 mm of the extract at 200 mg/ml was observed against S. pneumoniae. However, no zone of inhibition was observed against E. coli at the tested concentrations of the extract. Based on the results obtained in this study, it may be concluded that the fruit peel of P. granatum possess broad spectrum of antibacterial activity against a number bacteria.

Keywords: Punica granatum Linn., methanol extract, antibacterial, zone of inhibition

Procedia PDF Downloads 394
12740 Radiative Reactions Analysis at the Range of Astrophysical Energies

Authors: A. Amar

Abstract:

Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.

Keywords: elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction

Procedia PDF Downloads 211
12739 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 247
12738 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography

Procedia PDF Downloads 135
12737 Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges

Authors: Arlett A. Rosado-Torres, Ismael Marino-Tapia

Abstract:

Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef.

Keywords: hydrodynamic model, macroalgae, nutrients, phase shift

Procedia PDF Downloads 153
12736 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia

Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke

Abstract:

Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.

Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia

Procedia PDF Downloads 33
12735 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions

Authors: Mikhail O. Eremin

Abstract:

Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.

Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault

Procedia PDF Downloads 141
12734 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 287
12733 Remote Sensing Study of Wind Energy Potential in Agsu District

Authors: U. F. Mammadova

Abstract:

Natural resources is the main self-supplying way which is being studied in the paper. Ecologically clean and independent clean energy stock is wind one. This potential is first studied by applying remote sensing way. In any coordinate of the district, wind energy potential has been determined by measuring the potential by applying radar technique which gives a possibility to reveal 2 D view. At several heights, including 10,50,100,150,200 ms, the measurements have been realized. The achievable power generation for m2 in the district was calculated. Daily, hourly, and monthly wind energy potential data were graphed and schemed in the paper. The energy, environmental, and economic advantages of wind energy for the Agsu district were investigated by analyzing radar spectral measurements after the remote sensing process.

Keywords: wind potential, spectral radar analysis, ecological clean energy, ecological safety

Procedia PDF Downloads 89
12732 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging

Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui

Abstract:

Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.

Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture

Procedia PDF Downloads 329