Search results for: generalized correlations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1579

Search results for: generalized correlations

1009 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 125
1008 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications

Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa

Abstract:

It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.

Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices

Procedia PDF Downloads 62
1007 Soil Parameters Identification around PMT Test by Inverse Analysis

Authors: I. Toumi, Y. Abed, A. Bouafia

Abstract:

This paper presents a methodology for identifying the cohesive soil parameters that takes into account different constitutive equations. The procedure, applied to identify the parameters of generalized Prager model associated to the Drucker & Prager failure criterion from a pressuremeter expansion curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the simulated curve using a simplex algorithm. The model response on pressuremeter path and its identification from experimental data lead to the determination of the friction angle, the cohesion and the Young modulus. Some parameters effects on the simulated curves and stresses path around pressuremeter probe are presented. Comparisons between the parameters determined with the proposed method and those obtained by other means are also presented.

Keywords: cohesive soils, cavity expansion, pressuremeter test, finite element method, optimization procedure, simplex algorithm

Procedia PDF Downloads 294
1006 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 452
1005 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)

Procedia PDF Downloads 427
1004 Relationship between Hepatokines and Insulin Resistance in Childhood Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Childhood obesity is an important clinical problem because it may lead to chronic diseases during the adulthood period of the individual. Obesity is a metabolic disease associated with low-grade inflammation. The liver occurs at the center of metabolic pathways. Adropin, fibroblast growth factor-21 (FGF-21), and fetuin-A are hepatokines. Due to the immense participation of the liver in glucose metabolism, these liver-derived factors may be associated with insulin resistance (IR), which is a phenomenon discussed within the scope of obesity problems. The aim of this study is to determine the concentrations of adropin, FGF-21, and fetuin-A in childhood obesity, to point out possible differences between the obesity groups, and to investigate possible associations among these three hepatokines in obese and morbidly obese children. A total of one hundred and thirty-two children were included in the study. Two obese groups were constituted. The groups were matched in terms of mean ± SD values of ages. Body mass index values of obese and morbidly obese groups were 25.0 ± 3.5 kg/m² and 29.8 ± 5.7 kg/m², respectively. Anthropometric measurements including waist circumference, hip circumference, head circumference, and neck circumference were recorded. Informed consent forms were taken from the parents of the participants. The ethics committee of the institution approved the study protocol. Blood samples were obtained after overnight fasting. Routine biochemical tests, including glucose- and lipid-related parameters, were performed. Concentrations of the hepatokines (adropin, FGF-21, fetuin A) were determined by enzyme-linked immunosorbent assay. Insulin resistance indices such as homeostasis model assessment for IR (HOMA-IR), alanine transaminase-to aspartate transaminase ratio (ALT/AST), diagnostic obesity notation model assessment laboratory index, diagnostic obesity notation model assessment metabolic syndrome index as well as obesity indices such as diagnostic obesity notation model assessment-II index, and fat mass index were calculated using the previously derived formulas. Statistical evaluation of the study data as well as findings of the study was performed by SPSS for Windows. Statistical difference was accepted significant when p is smaller than 0.05. Statistically significant differences were found for insulin, triglyceride, high-density lipoprotein cholesterol levels of the groups. A significant increase was observed for FGF-21 concentrations in the morbidly obese group. Higher adropin and fetuin-A concentrations were observed in the same group in comparison with the values detected in the obese group (p > 0.05). There was no statistically significant difference between the ALT/AST values of the groups. In all of the remaining IR and obesity indices, significantly increased values were calculated for morbidly obese children. Significant correlations were detected between HOMA-IR and each of the hepatokines. The highest one was the association with fetuin-A (r=0.373, p=0.001). In conclusion, increased levels observed in adropin, FGF-21, and fetuin-A have shown that these hepatokines possess increasing potential going from obese to morbid obese state. Out of the correlations found with the IR index, the most affected hepatokine was fetuin-A, the parameter possibly used as the indicator of the advanced obesity stage.

Keywords: adropin, fetuin A, fibroblast growth factor-21, insulin resistance, pediatric obesity

Procedia PDF Downloads 176
1003 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes

Authors: Ruijia Hu, Susanna T.Y. Tong

Abstract:

Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.

Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models

Procedia PDF Downloads 53
1002 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: non-minimum phase system, optimal linear quadratic tracker, proportional plus integral observer, state and disturbance estimator

Procedia PDF Downloads 504
1001 The Second Smallest Eigenvalue of Complete Tripartite Hypergraph

Authors: Alfi Y. Zakiyyah, Hanni Garminia, M. Salman, A. N. Irawati

Abstract:

In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph.

Keywords: connectivity, graph, hypergraph, Laplacian matrix

Procedia PDF Downloads 491
1000 Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels

Authors: Mahmoud M. Tash

Abstract:

The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.

Keywords: hot forging, hot rolling, heat treatment, hardness (HV), impact toughness (J), microstructure, low alloy steels

Procedia PDF Downloads 517
999 South African Multiple Deprivation-Concentration Index Quantiles Differentiated by Components of Success and Impediment to Tuberculosis Control Programme Using Mathematical Modelling in Rural O. R. Tambo District Health Facilities

Authors: Ntandazo Dlatu, Benjamin Longo-Mbenza, Andre Renzaho, Ruffin Appalata, Yolande Yvonne Valeria Matoumona Mavoungou, Mbenza Ben Longo, Kenneth Ekoru, Blaise Makoso, Gedeon Longo Longo

Abstract:

Background: The gap between complexities related to the integration of Tuberculosis /HIV control and evidence-based knowledge motivated the initiation of the study. Therefore, the objective of this study was to explore correlations between national TB management guidelines, multiple deprivation indexes, quantiles, components and levels of Tuberculosis control programme using mathematical modeling in rural O.R. Tambo District Health Facilities, South Africa. Methods: The study design used mixed secondary data analysis and cross-sectional analysis between 2009 and 2013 across O.R Tambo District, Eastern Cape, South Africa using univariate/ bivariate analysis, linear multiple regression models, and multivariate discriminant analysis. Health inequalities indicators and component of an impediment to the tuberculosis control programme were evaluated. Results: In total, 62 400 records for TB notification were analyzed for the period 2009-2013. There was a significant but negative between Financial Year Expenditure (r= -0.894; P= 0.041) Seropositive HIV status(r= -0.979; P= 0.004), Population Density (r = -0.881; P= 0.048) and the number of TB defaulter in all TB cases. It was shown unsuccessful control of TB management program through correlations between numbers of new PTB smear positive, TB defaulter new smear-positive, TB failure all TB, Pulmonary Tuberculosis case finding index and deprivation-concentration-dispersion index. It was shown successful TB program control through significant and negative associations between declining numbers of death in co-infection of HIV and TB, TB deaths all TB and SMIAD gradient/ deprivation-concentration-dispersion index. The multivariate linear model was summarized by unadjusted r of 96%, adjusted R2 of 95 %, Standard Error of estimate of 0.110, R2 changed of 0.959 and significance for variance change for P=0.004 to explain the prediction of TB defaulter in all TB with equation y= 8.558-0.979 x number of HIV seropositive. After adjusting for confounding factors (PTB case finding the index, TB defaulter new smear-positive, TB death in all TB, TB defaulter all TB, and TB failure in all TB). The HIV and TB death, as well as new PTB smear positive, were identified as the most important, significant, and independent indicator to discriminate most deprived deprivation index far from other deprivation quintiles 2-5 using discriminant analysis. Conclusion: Elimination of poverty such as overcrowding, lack of sanitation and environment of highest burden of HIV might end the TB threat in O.R Tambo District, Eastern Cape, South Africa. Furthermore, ongoing adequate budget comprehensive, holistic and collaborative initiative towards Sustainable Developmental Goals (SDGs) is necessary for complete elimination of TB in poor O.R Tambo District.

Keywords: tuberculosis, HIV/AIDS, success, failure, control program, health inequalities, South Africa

Procedia PDF Downloads 171
998 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression

Authors: N. Alhazmi

Abstract:

Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.

Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity

Procedia PDF Downloads 222
997 Sustainable Development Goals: The Effect of a Board Structure on the Sustainability Performance

Authors: V. Naciti, L. Pulejo, F. Cesaroni

Abstract:

This study empirically analyzes whether the composition of the board of directors (BoD) enhances sustainability performance, in order to understand how the BoD contribute to the integration of Sustainable Development Goals (SDGs) in their businesses. Hypotheses are developed based on the agency theory and stakeholder theory. Using a system generalized method of the moment (SGMM) two-step estimator, with data from Sustainalytics and Compustat databases for 362 firms in six regions, we find that firms with more diversity on the board and a separation of chair and CEO roles have higher sustainability performance. Moreover, our findings provide that a higher number of independent directors is negatively associated with sustainability performance. This study contributes to the literature on corporate governance and the firm’s performance by demonstrating that the composition of the board of directors contributes to a better sustainability performance: by the implementation of a particular corporate governance mechanism, it is possible to integrate SDGs in the corporate strategy.

Keywords: sustainable development goals, corporate governance, board of directors, sustainability performance

Procedia PDF Downloads 180
996 Development and Validation of a Quantitative Measure of Engagement in the Analysing Aspect of Dialogical Inquiry

Authors: Marcus Goh Tian Xi, Alicia Chua Si Wen, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee

Abstract:

The Map of Dialogical Inquiry provides a conceptual look at the underlying nature of future-oriented skills. According to the Map, learning is learner-oriented, with conversational time shifted from teachers to learners, who play a strong role in deciding what and how they learn. For example, in courses operating on the principles of Dialogical Inquiry, learners were able to leave the classroom with a deeper understanding of the topic, broader exposure to differing perspectives, and stronger critical thinking capabilities, compared to traditional approaches to teaching. Despite its contributions to learning, the Map is grounded in a qualitative approach both in its development and its application for providing feedback to learners and educators. Studies hinge on openended responses by Map users, which can be time consuming and resource intensive. The present research is motivated by this gap in practicality by aiming to develop and validate a quantitative measure of the Map. In addition, a quantifiable measure may also strengthen applicability by making learning experiences trackable and comparable. The Map outlines eight learning aspects that learners should holistically engage. This research focuses on the Analysing aspect of learning. According to the Map, Analysing has four key components: liking or engaging in logic, using interpretative lenses, seeking patterns, and critiquing and deconstructing. Existing scales of constructs (e.g., critical thinking, rationality) related to these components were identified so that the current scale could adapt items from. Specifically, items were phrased beginning with an “I”, followed by an action phrase, to fulfil the purpose of assessing learners' engagement with Analysing either in general or in classroom contexts. Paralleling standard scale development procedure, the 26-item Analysing scale was administered to 330 participants alongside existing scales with varying levels of association to Analysing, to establish construct validity. Subsequently, the scale was refined and its dimensionality, reliability, and validity were determined. Confirmatory factor analysis (CFA) revealed if scale items loaded onto the four factors corresponding to the components of Analysing. To refine the scale, items were systematically removed via an iterative procedure, according to their factor loadings and results of likelihood ratio tests at each step. Eight items were removed this way. The Analysing scale is better conceptualised as unidimensional, rather than comprising the four components identified by the Map, for three reasons: 1) the covariance matrix of the model specified for the CFA was not positive definite, 2) correlations among the four factors were high, and 3) exploratory factor analyses did not yield an easily interpretable factor structure of Analysing. Regarding validity, since the Analysing scale had higher correlations with conceptually similar scales than conceptually distinct scales, with minor exceptions, construct validity was largely established. Overall, satisfactory reliability and validity of the scale suggest that the current procedure can result in a valid and easy-touse measure for each aspect of the Map.

Keywords: analytical thinking, dialogical inquiry, education, lifelong learning, pedagogy, scale development

Procedia PDF Downloads 91
995 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. M. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1 + (2,3)-> 1 + (2,3) as well as recombination 1 + (2,3) -> 2 + (3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the three-dimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: statistical mechanics, nonlocal separable potential, three-body interaction, faddeev equations

Procedia PDF Downloads 401
994 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects

Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov

Abstract:

The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.

Keywords: effective properties, scale effects, surface defects, voids elasticity

Procedia PDF Downloads 422
993 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 229
992 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 287
991 Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges

Authors: Ceshi Sun, Yueyu Zhao, Yaobing Zhao, Zhiqiang Wang, Jian Peng, Pengxin Guo

Abstract:

With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated.

Keywords: cable, cable-stayed bridge, long-span, statistical analysis

Procedia PDF Downloads 635
990 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 390
989 Prediction Study of the Structural, Elastic and Electronic Properties of the Parent and Martensitic Phases of Nonferrous Ti, Zr, and Hf Pure Metals

Authors: Tayeb Chihi, Messaoud Fatmi

Abstract:

We present calculations of the structural, elastic and electronic properties of nonferrous Ti, Zr, and Hf pure metals in both parent and martensite phases in bcc and hcp structures respectively. They are based on the generalized gradient approximation (GGA) within the density functional theory (DFT). The shear modulus, Young's modulus and Poisson's ratio for Ti, Zr, and Hf metals have were calculated and compared with the corresponding experimental values. Using elastic constants obtained from calculations GGA, the bulk modulus along the crystallographic axes of single crystals was calculated. This is in good agreement with experiment for Ti and Zr, whereas the hcp structure for Hf is a prediction. At zero temperature and zero pressure, the bcc crystal structure is found to be mechanically unstable for Ti, Zr, and Hf. In our calculations the hcp structures is correctly found to be stable at the equilibrium volume. In the electronic density of states (DOS), the smaller n(EF) is, the more stable the compound is. Therefore, in agreement with the results obtained from the total energy minimum.

Keywords: Ti, Zr, Hf, pure metals, transformation, energy

Procedia PDF Downloads 355
988 Copula Markov Switching Multifractal Models for Forecasting Value-at-Risk

Authors: Giriraj Achari, Malay Bhattacharyya

Abstract:

In this paper, the effectiveness of Copula Markov Switching Multifractal (MSM) models at forecasting Value-at-Risk of a two-stock portfolio is studied. The innovations are allowed to be drawn from distributions that can capture skewness and leptokurtosis, which are well documented empirical characteristics observed in financial returns. The candidate distributions considered for this purpose are Johnson-SU, Pearson Type-IV and α-Stable distributions. The two univariate marginal distributions are combined using the Student-t copula. The estimation of all parameters is performed by Maximum Likelihood Estimation. Finally, the models are compared in terms of accurate Value-at-Risk (VaR) forecasts using tests of unconditional coverage and independence. It is found that Copula-MSM-models with leptokurtic innovation distributions perform slightly better than Copula-MSM model with Normal innovations. Copula-MSM models, in general, produce better VaR forecasts as compared to traditional methods like Historical Simulation method, Variance-Covariance approach and Copula-Generalized Autoregressive Conditional Heteroscedasticity (Copula-GARCH) models.

Keywords: Copula, Markov Switching, multifractal, value-at-risk

Procedia PDF Downloads 165
987 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.

Keywords: European option pricing, fractional Black-Scholes equations, fractional g-Brownian motion, Taylor's series of fractional order, uncertain volatility

Procedia PDF Downloads 163
986 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory

Procedia PDF Downloads 278
985 Competitor Analysis to Quantify the Benefits and for Different Use of Transport Infrastructure

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Different transportation modes have key operational advantages and disadvantages, providing a variety of different transport options to users and passengers. This paper reviews key variables for the competition between air transport and other transport modes. The aim of this paper is to review the competition between air transport and other transport modes, providing results in terms of perceived cost for the users, for destinations high competitiveness for all transport modes. The competitor analysis variables include the cost and time outputs for each transport option, highlighting the level of competitiveness on high demanded Origin-Destination corridors. The case study presents the output of a such analysis for the OD corridor in Greece that connects the Capital city (Athens) with the second largest city (Thessaloniki) and the different transport modes have been considered (air, train, road). Conventional wisdom is to present an easy to handle tool for planners, managers and decision makers towards pricing policy effectiveness and demand attractiveness, appropriate to use for other similar cases.

Keywords: competitor analysis, transport economics, transport generalized cost, quantitative modelling

Procedia PDF Downloads 248
984 A Geometrical Method for the Smoluchowski Equation on the Sphere

Authors: Adriano Valdes-Gomez, Francisco Javier Sevilla

Abstract:

We devise a numerical algorithm to simulate the diffusion of a Brownian particle restricted to the surface of a three-dimensional sphere when the particle is under the effects of an external potential that is coupled linearly. It is obtained using elementary geometry, yet, it converges, in the weak sense, to the solutions to the Smoluchowski equation. Rotations on the sphere, which are the analogs of linear displacements in euclidean spaces, are calculated using algebraic operations and then by a proper scaling, which makes the algorithm efficient and quite simple, especially to what may be the short-time propagator approach. Our findings prove that the global effects of curvature are taken into account in both dynamic and stationary processes, and it is not restricted to work in configuration space, neither restricted to the overdamped limit. We have generalized it successfully to simulate the Kramers or the Ornstein-Uhlenbeck process, where it is necessary to work directly in phase space, and it may be adapted to other two dimensional surfaces with non-constant curvature.

Keywords: diffusion on the sphere, Fokker-Planck equation on the sphere, non equilibrium processes on the sphere, numerical methods for diffusion on the sphere

Procedia PDF Downloads 183
983 A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle

Authors: Hamid Rezaei, Xiaotao Bi, C. Jim Lim, Anthony Lau, Shahab Sokhansanj

Abstract:

A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone.

Keywords: pyrolysis, kinetics, model, single particle

Procedia PDF Downloads 321
982 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness

Authors: I. Algul, G. Akgun, H. Kurtaran

Abstract:

Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.

Keywords: differential quadrature method, doubly curved panels, laminated composite materials, small displacement

Procedia PDF Downloads 360
981 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation

Authors: N. Lebga, Kh. Bouamama, K. Kassali

Abstract:

We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.

Keywords: density functional theory, elastic properties, ZnS, ZnSe,

Procedia PDF Downloads 574
980 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 484