Search results for: fuzzy control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18591

Search results for: fuzzy control systems

18021 Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter

Authors: Yousfi Abdelkader, Chaker Abdelkader, Bot Youcef

Abstract:

This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage.

Keywords: power quality, shunt active power filter, interval type-2 fuzzy logic controller (T2FL), multilevel inverter

Procedia PDF Downloads 165
18020 Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes

Authors: Mamyrbek A. Beisenbi, Nurgul M. Kissikova, Saltanat E. Beisembina, Salamat T. Suleimenova, Samal A. Kaliyeva

Abstract:

The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system.

Keywords: gradient-velocity method of Lyapunov vector-functions, hyperbolic umbilic, self-organizing control system, stability

Procedia PDF Downloads 126
18019 A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites

Authors: Murat Gunduz, Mustafa Ozdemir

Abstract:

In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model.

Keywords: Fuzzy set theory, safety performance assessment, safety index, structural equation modeling (SEM), construction sites

Procedia PDF Downloads 514
18018 A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development

Authors: Wann-Ming Wey

Abstract:

In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan.

Keywords: green TOD, built environment, fuzzy delphi technique, quality function deployment, fuzzy analytic network process

Procedia PDF Downloads 368
18017 Fuzzy Decision Making to the Construction Project Management: Glass Facade Selection

Authors: Katarina Rogulj, Ivana Racetin, Jelena Kilic

Abstract:

In this study, the fuzzy logic approach (FLA) was developed for construction project management (CPM) under uncertainty and duality. The focus was on decision making in selecting the type of the glass facade for a residential-commercial building in the main design. The adoption of fuzzy sets was capable of reflecting construction managers’ reliability level over subjective judgments, and thus the robustness of the system can be achieved. An α-cuts method was utilized for discretizing the fuzzy sets in FLA. This method can communicate all uncertain information in the optimization process, taking into account the values of this information. Furthermore, FLA provides in-depth analyses of diverse policy scenarios that are related to various levels of economic aspects when it comes to the construction projects' valid decision making. The developed approach is applied to CPM to demonstrate its applicability. Analyzing the materials of glass facades, variants were defined. The development of the FLA for the CPM included relevant construction projec'ts stakeholders that were involved in the criteria definition to evaluate each variant. Using fuzzy Decision-Making Trial and Evaluation Laboratory Method (DEMATEL) comparison of the glass facade was conducted. This way, a rank, according to the priorities for inclusion into the main design, of variants is obtained. The concept was tested on a residential-commercial building in the city of Rijeka, Croatia. The newly developed methodology was then compared with the existing one. The aim of the research was to define an approach that will improve current judgments and decisions when it comes to the material selection of buildings facade as one of the most important architectural and engineering tasks in the main design. The advantage of the new methodology compared to the old one is that it includes the subjective side of the managers’ decisions, as an inevitable factor in each decision making. The proposed approach can help construction projects managers to identify the desired type of glass facade according to their preference and practical conditions, as well as facilitate in-depth analyses of tradeoffs between economic efficiency and architectural design.

Keywords: construction projects management, DEMATEL, fuzzy logic approach, glass façade selection

Procedia PDF Downloads 129
18016 Imperfect Production Inventory Model with Inspection Errors and Fuzzy Demand and Deterioration Rates

Authors: Chayanika Rout, Debjani Chakraborty, Adrijit Goswami

Abstract:

Our work presents an inventory model which illustrates imperfect production and imperfect inspection processes for deteriorating items. A cost-minimizing model is studied considering two types of inspection errors, namely, Type I error of falsely screening out a proportion of non-defects, thereby passing them on for rework and Type II error of falsely not screening out a proportion of defects, thus selling those to customers which incurs a penalty cost. The screened items are reworked; however, no returns are entertained due to deteriorating nature of the items. In more practical situations, certain parameters such as the demand rate and the deterioration rate of inventory cannot be accurately determined, and therefore, they are assumed to be triangular fuzzy numbers in our model. We calculate the optimal lot size that must be produced in order to minimize the total inventory cost for both the crisp and the fuzzy models. A numerical example is also considered to exemplify the procedure which is followed by the analysis of sensitivity of various parameters on the decision variable and the objective function.

Keywords: deteriorating items, EPQ, imperfect quality, rework, type I and type II inspection errors

Procedia PDF Downloads 175
18015 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 508
18014 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems

Authors: Dae-Hee Son, Soon-Ryul Nam

Abstract:

The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.

Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF (rate of change of frequency)

Procedia PDF Downloads 391
18013 Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant

Authors: Khaing Yadana Swe, Lillie Dewan

Abstract:

At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.

Keywords: model-free adaptive control, cascade control, adaptive control, PID

Procedia PDF Downloads 596
18012 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 445
18011 A New Approach towards the Development of Next Generation CNC

Authors: Yusri Yusof, Kamran Latif

Abstract:

Computer Numeric Control (CNC) machine has been widely used in the industries since its inception. Currently, in CNC technology has been used for various operations like milling, drilling, packing and welding etc. with the rapid growth in the manufacturing world the demand of flexibility in the CNC machines has rapidly increased. Previously, the commercial CNC failed to provide flexibility because its structure was of closed nature that does not provide access to the inner features of CNC. Also CNC’s operating ISO data interface model was found to be limited. Therefore, to overcome that problem, Open Architecture Control (OAC) technology and STEP-NC data interface model are introduced. At present the Personal Computer (PC) has been the best platform for the development of open-CNC systems. In this paper, both ISO data interface model interpretation, its verification and execution has been highlighted with the introduction of the new techniques. The proposed is composed of ISO data interpretation, 3D simulation and machine motion control modules. The system is tested on an old 3 axis CNC milling machine. The results are found to be satisfactory in performance. This implementation has successfully enabled sustainable manufacturing environment.

Keywords: CNC, ISO 6983, ISO 14649, LabVIEW, open architecture control, reconfigurable manufacturing systems, sustainable manufacturing, Soft-CNC

Procedia PDF Downloads 507
18010 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 183
18009 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method

Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam

Abstract:

Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.

Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty

Procedia PDF Downloads 546
18008 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.

Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints

Procedia PDF Downloads 568
18007 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties

Authors: Alia Abdul Ghaffar, Tom Richardson

Abstract:

A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive control, unlike a fixed gain control, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture results in an enhanced tracking performance in the presence of parametric uncertainties.

Keywords: UAV, quadrotor, robotic arm augmentation, model reference adaptive control, LQR control

Procedia PDF Downloads 462
18006 Synchronization of a Perturbed Satellite Attitude Motion using Active Sliding Mode Controller

Authors: Djaouida Sadaoui

Abstract:

In this paper, the design procedure of the active sliding mode controller which is a combination of the active controller and the sliding mode controller is given first and then the problem of synchronization of two satellites systems is discussed for the proposed method. Finally, numerical results are presented to evaluate the robustness and effectiveness of the proposed control strategy.

Keywords: active control, sliding mode control, synchronization, satellite attitude

Procedia PDF Downloads 483
18005 Broadcasting Stabilization for Dynamical Multi-Agent Systems

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded:stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper.

Keywords: broadcasting control, multi-agent system, transfer function, stabilization

Procedia PDF Downloads 372
18004 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach

Authors: Jorge R. Santos, Pedro Sebastiao

Abstract:

In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.

Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js

Procedia PDF Downloads 131
18003 Progressive Multimedia Collection Structuring via Scene Linking

Authors: Aman Berhe, Camille Guinaudeau, Claude Barras

Abstract:

In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.

Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection

Procedia PDF Downloads 89
18002 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 116
18001 Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise, and improve EOR methods and their application. Recently, Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic, and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization infeasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 480
18000 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.

Keywords: data mining, k-means, MCOKE, overlapping

Procedia PDF Downloads 561
17999 Disparities Versus Similarities; WHO Good Practices for Pharmaceutical Quality Control Laboratories and ISO/IEC 17025:2017: International Standards for Quality Management Systems in Pharmaceutical Laboratories

Authors: Mercy Okezue, Kari Clase, Stephen Byrn, Paddy Shivanand

Abstract:

Medicines regulatory authorities expect pharmaceutical companies and contract research organizations to seek ways to certify that their laboratory control measurements are reliable. Establishing and maintaining laboratory quality standards are essential in ensuring the accuracy of test results. ‘ISO/IEC 17025:2017’ and ‘WHO Good Practices for Pharmaceutical Quality Control Laboratories (GPPQCL)’ are two quality standards commonly employed in developing laboratory quality systems. A review was conducted on the two standards to elaborate on areas on convergence and divergence. The goal was to understand how differences in each standard's requirements may influence laboratories' choices as to which document is easier to adopt for quality systems. A qualitative review method compared similar items in the two standards while mapping out areas where there were specific differences in the requirements of the two documents. The review also provided a detailed description of the clauses and parts covering management and technical requirements in these laboratory standards. The review showed that both documents share requirements for over ten critical areas covering objectives, infrastructure, management systems, and laboratory processes. There were, however, differences in standard expectations where GPPQCL emphasizes system procedures for planning and future budgets that will ensure continuity. Conversely, ISO 17025 was more focused on the risk management approach to establish laboratory quality systems. Elements in the two documents form common standard requirements to assure the validity of laboratory test results that promote mutual recognition. The ISO standard currently has more global patronage than GPPQCL.

Keywords: ISO/IEC 17025:2017, laboratory standards, quality control, WHO GPPQCL

Procedia PDF Downloads 184
17998 Design and Analysis of Active Rocket Control Systems

Authors: Piotr Jerzy Rugor, Julia Wajoras

Abstract:

The presented work regards a single-stage aerodynamically controlled solid propulsion rocket. Steering a rocket to fly along a predetermined trajectory can be beneficial for minimizing aerodynamic losses and achieved by implementing an active control system on board. In this particular case, a canard configuration has been chosen, although other methods of control have been considered and preemptively analyzed, including non-aerodynamic ones. The objective of this work is to create a system capable of guiding the rocket, focusing on roll stabilization. The paper describes initial analysis of the problem, covers the main challenges of missile guidance and presents data acquired during the experimental study.

Keywords: active canard control system, rocket design, numerical simulations, flight optimization

Procedia PDF Downloads 187
17997 Simulation Based Performance Comparison of Different Control Methods of ZSI Feeding Industrial Drives

Authors: Parag Nihawan, Ravinder Singh Bhatia, Dinesh Kumar Jain

Abstract:

Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.

Keywords: Z-source inverter, total harmonic distortion, direct torque control, field orientation control

Procedia PDF Downloads 576
17996 Evaluation of the Enablers of Industry 4.0 in the Ready-Made Garments Sector of Bangladesh: A Fuzzy Analytical Hierarchy Process Approach

Authors: Shihab-Uz-Zaman Shah, Sanjeeb Roy, Habiba Akter

Abstract:

Keeping the high impact of the Ready-Made Garments (RMG) on the country’s economic growth in mind, this research paves a way for the implementation of Industry 4.0 in the garments industry of Bangladesh. At present, Industry 4.0 is a common buzzword representing the adoption of digital technologies in the production process to transform the existing industries into smart factories and create a great change in the global value chain. The RMG industry is the largest industrial sector of Bangladesh which provides 12.26% to its National GDP (Gross Domestic Product). The work starts with identifying possible enablers of Industry 4.0. To evaluate the enablers, a Multiple-Criteria Decision-Making (MCDM) procedure named Fuzzy Analytical Hierarchy Process (FAHP) was used. A questionnaire was developed as a part of a survey for collecting and analyzing expert opinions from relevant academicians and industrialists. The responses were eventually used as the input for the FAHP which helped to assign weight matrices to the enablers. This weight matrix indicated the level of importance of these enablers. The full paper will discuss the way of a successful evaluation of the enablers and implementation of Industry 4.0 by using these enablers.

Keywords: enablers, fuzzy AHP, industry 4.0, RMG sector

Procedia PDF Downloads 154
17995 The Importance of Development in Laboratory Diagnosis at the Intersection

Authors: Agus Sahri, Cahya Putra Dinata, Faishal Andhi Rokhman

Abstract:

Intersection is a critical area on a highway which is a place of conflict points and congestion due to the meeting of two or more roads. Conflicts that occur at the intersection include diverging, merging, weaving, and crossing. To deal with these conflicts, a crossing control system is needed, at a plot of intersection there are two control systems namely signal intersections and non-signalized intersections. The control system at a plot of intersection can affect the intersection performance. In Indonesia there are still many intersections with poor intersection performance. In analyzing the parameters to measure the performance of a plot of intersection in Indonesia, it is guided by the 1997 Indonesian Road Capacity Manual. For this reason, this study aims to develop laboratory diagnostics at plot intersections to analyze parameters that can affect the performance of an intersection. The research method used is research and development. The laboratory diagnosis includes anamnesis, differential diagnosis, inspection, diagnosis, prognosis, specimens, analysis and sample data analysts. It is expected that this research can encourage the development and application of laboratory diagnostics at a plot of intersection in Indonesia so that intersections can function optimally.

Keywords: intersection, the laboratory diagnostic, control systems, Indonesia

Procedia PDF Downloads 172
17994 System-Driven Design Process for Integrated Multifunctional Movable Concepts

Authors: Oliver Bertram, Leonel Akoto Chama

Abstract:

In today's civil transport aircraft, the design of flight control systems is based on the experience gained from previous aircraft configurations with a clear distinction between primary and secondary flight control functions for controlling the aircraft altitude and trajectory. Significant system improvements are now seen particularly in multifunctional moveable concepts where the flight control functions are no longer considered separate but integral. This allows new functions to be implemented in order to improve the overall aircraft performance. However, the classical design process of flight controls is sequential and insufficiently interdisciplinary. In particular, the systems discipline is involved only rudimentarily in the early phase. In many cases, the task of systems design is limited to meeting the requirements of the upstream disciplines, which may lead to integration problems later. For this reason, approaching design with an incremental development is required to reduce the risk of a complete redesign. Although the potential and the path to multifunctional moveable concepts are shown, the complete re-engineering of aircraft concepts with less classic moveable concepts is associated with a considerable risk for the design due to the lack of design methods. This represents an obstacle to major leaps in technology. This gap in state of the art is even further increased if, in the future, unconventional aircraft configurations shall be considered, where no reference data or architectures are available. This means that the use of the above-mentioned experience-based approach used for conventional configurations is limited and not applicable to the next generation of aircraft. In particular, there is a need for methods and tools for a rapid trade-off between new multifunctional flight control systems architectures. To close this gap in the state of the art, an integrated system-driven design process for multifunctional flight control systems of non-classical aircraft configurations will be presented. The overall goal of the design process is to find optimal solutions for single or combined target criteria in a fast process from the very large solution space for the flight control system. In contrast to the state of the art, all disciplines are involved for a holistic design in an integrated rather than a sequential process. To emphasize the systems discipline, this paper focuses on the methodology for designing moveable actuation systems in the context of this integrated design process of multifunctional moveables. The methodology includes different approaches for creating system architectures, component design methods as well as the necessary process outputs to evaluate the systems. An application example of a reference configuration is used to demonstrate the process and validate the results. For this, new unconventional hydraulic and electrical flight control system architectures are calculated which result from the higher requirements for multifunctional moveable concept. In addition to typical key performance indicators such as mass and required power requirements, the results regarding the feasibility and wing integration aspects of the system components are examined and discussed here. This is intended to show how the systems design can influence and drive the wing and overall aircraft design.

Keywords: actuation systems, flight control surfaces, multi-functional movables, wing design process

Procedia PDF Downloads 131
17993 Optimal Closed-loop Input Shaping Control Scheme for a 3D Gantry Crane

Authors: Mohammad Javad Maghsoudi, Z. Mohamed, A. R. Husain

Abstract:

Input shaping has been utilized for vibration reduction of many oscillatory systems. This paper presents an optimal closed-loop input shaping scheme for control of a three dimensional (3D) gantry crane system including. This includes a PID controller and Zero Vibration shaper which consider two control objectives concurrently. The control objectives are minimum sway of a payload and fast and accurate positioning of a trolley. A complete mathematical model of a lab-scaled 3D gantry crane is simulated in Simulink. Moreover, by utilizing PSO algorithm and a proposed scheme the controller is designed to cater both control objectives concurrently. Simulation studies on a 3D gantry crane show that the proposed optimal controller has an acceptable performance. The controller provides good position response with satisfactory payload sway in both rail and trolley responses.

Keywords: 3D gantry crane, input shaping, closed-loop control, optimal scheme, PID

Procedia PDF Downloads 405
17992 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 398