Search results for: full reference image quality assessment (FR-IQA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20187

Search results for: full reference image quality assessment (FR-IQA)

19617 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients

Procedia PDF Downloads 377
19616 City Image of Rio De Janeiro as the Host City of 2016 Olympic Games

Authors: Luciana Brandao Ferreira, Janaina de Moura Engracia Giraldi, Fabiana Gondim Mariutti, Marina Toledo de Arruda Lourencao

Abstract:

Developing countries, such as BRICS (Brazil, Russia, India, China and South Africa) are hosting sports mega-events to promote socio-economic development and image enhancement. Thus, this paper aims to verify the image of Rio de Janeiro, in Brazil, as the host city of 2016 Olympic Games, considering the main cognitive and affective image dimensions. The research design uses exploratory factorial analysis to find the most important factors highlighted in the city image dimensions. The data were collected by structured questionnaires with an international respondents sample (n=274) with high international travel experience. The results show that Rio’s image as a sport mega-event host city has two main factors in each dimension: Cognitive ('General Infrastructure'; 'Services and Attractions') and Affective ('Positive Feelings'; 'Negative Feelings'). The most important factor related to cognitive dimension was 'Services and Attractions' which is more related to tourism activities. In the affective dimension 'Positive Feelings' was the most important factor, which means a good result considering that is a city in an emerging country with many unmet social demands.

Keywords: Rio de Janeiro, 2016 olympic games, host city image, cognitive image dimension, affective image dimension

Procedia PDF Downloads 149
19615 The Impact of Teachers’ Beliefs and Perceptions about Formative Assessment in the University ESL Class Assistant Lecturer: Barzan Hadi Hama Karim University of Halabja

Authors: Barzan Hadi Hama Karim

Abstract:

The topic of formative assessment and its implementation in Iraqi Kurdistan have not attracted the attention of researchers and educators. Teachers’ beliefs about formative assessment as well as their assessment roles have remained unexplored. This paper reports on the research results of our survey which is conducted in 20014 to examine issues relating to formative assessment in the university ESL classroom settings. The paper portrays the findings of a qualitative study on the formative assessment role and beliefs of a group of teachers of English as a Foreign Language (EFL) in the departments of English Languages in Iraqi Kurdistan universities. Participants of the study are 25 Kurdish EFL teachers from different departments of English languages. Close-ended and open-ended questionnaire is used to collect teacher’s beliefs and perceptions about the importance of formative assessment to improve the process of teaching and learning English language. The result of the study shows that teachers do not play a significant role in the assessment process because of top-down managerial approaches and educational system. The results prove that the teachers’ assessment beliefs and their key role in assessment should not be neglected. Our research papers pursued the following questions: What is the nature of formative assessment in a second language classroom setting? Do the teacher’s assessment practices reflect what she thinks about formative assessment? What are the teachers’ perceptions regarding the benefits of formative assessment for teaching and learning English language at the university level?

Keywords: formative assessment, teachers’ beliefs and perceptions, assessment, education reform, ESL

Procedia PDF Downloads 403
19614 An Improved Image Steganography Technique Based on Least Significant Bit Insertion

Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo

Abstract:

In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.

Keywords: steganography, image steganography, least significant bits, bit map image

Procedia PDF Downloads 268
19613 Tank Barrel Surface Damage Detection Algorithm

Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský

Abstract:

The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.

Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank

Procedia PDF Downloads 141
19612 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial

Procedia PDF Downloads 639
19611 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 323
19610 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 69
19609 The Study of Suan Sunandha Rajabhat University’s Image among People in Bangkok

Authors: Sawitree Suvanno

Abstract:

The objective of this study is to investigate the Suan Sunandha Rajabhat University (SSRU) image among people in Bangkok. This study was conducted in the quantitative research and the questionnaires were used to collect data from 360 people of a sample group. Descriptive and inferential statistics were used in data analysis. The result showed that the SSRU’s image among people in Bangkok is in the “rather true” level of questionnaire scale in all aspects measured. The aspect that gains the utmost average is that the university is considered as royal-oriented and conservative; 2) the instructional supplies, buildings and venue promoting Thai art and tradition; 3) the moral and honest university administration; 4) the curriculum and the skillful students as well as graduates. Additional, people in Bangkok with different profession have the different view to the SSRU’s image at the significant level 0.05; there is no significant difference in gender, age and income.

Keywords: Bangkok, demographics, image, Suan Sunandha Rajabhpat University

Procedia PDF Downloads 250
19608 Treatment of Interferograms Image of Perturbation Processes in Metallic Samples by Optical Method

Authors: Daira Radouane, Naim Boudmagh, Hamada Adel

Abstract:

The but of this handling is to use the technique of the shearing with a mechanism lapping machine of image: a prism of Wollaston. We want to characterize this prism in order to be able to employ it later on in an analysis by shearing. A prism of Wollaston is a prism produced in a birefringent material i.e. having two indexes of refraction. This prism is cleaved so as to present the directions associated with these indices in its face with entry. It should be noted that these directions are perpendicular between them.

Keywords: non destructive control, aluminium, interferometry, treatment of image

Procedia PDF Downloads 333
19607 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 156
19606 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras

Abstract:

Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.

Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality

Procedia PDF Downloads 349
19605 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 143
19604 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 351
19603 Evaluation of the Quality of Care for Premature Babies in the Neonatology Unit of the Centre Hospitalier Universitaire de Kamenge

Authors: Kankurize Josiane, Nizigama Mediatrice

Abstract:

Introduction: Burundi records a still high infant mortality rate. Despite efforts to reduce it, prematurity is still the leading cause of death in the neonatal period. The objective of this study was to assess the quality of care for premature babies hospitalized in the neonatology unit of the Centre Hospitalier Universitaire de Kamenge. Method: This was a descriptive and evaluative prospective carried out in the neonatology unit of the CHUK (Centre Hospitalier Universitaire de Kamenge) from December 1, 2016, to May 31, 2017, including 70 premature babies, 65 mothers of premature babies and 15 providers including a pediatrician and 14 nurses. Using a tool developed by the World Health Organization and adapted to the local context by national experts, the quality of care for premature babies was assessed. Results: Prematurity accounted for 44.05% of hospitalizations in neonatology at the University Hospital of Kamenge. The assessment of the quality of care for premature babies was of low quality, with an average global score of 2/5 (50%), indicating that there is a considerable need for improvement to reach the standards. Conclusion: Efforts must be made to have infrastructures, materials, and human resources sufficient in quality and quantity so that the neonatology unit of the CHUK can be efficient and optimize the care of premature babies.

Keywords: quality of care, evaluation, premature, standards

Procedia PDF Downloads 68
19602 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork

Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting

Abstract:

This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.

Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark

Procedia PDF Downloads 270
19601 Exploring the Impact of Dual Brand Image on Continuous Smartphone Usage Intention

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

The mobile phone has no longer confined to communication, from the aspect of smartphones, consumers are only willing to pay for the product which the added value has corresponded with their appetites, such as multiple application, upgrade of the camera, and the appearance of the phone and so on. Moreover, as the maturity stage of smartphone industry today, the strategy which manufactures used to gain competitive advantages through hardware as well as software differentiation, is no longer valid. Thus, this research aims to initiate from brand image, to examine exactly whether consumers’ buying intention focus on smartphone brand or operating system, at the same time, perceived value and customer satisfaction will be added between brand image and continuous usage intention to investigate the impact of these two facets toward continuous usage intention. This study verifies the correlation, fitness, and relationship between the variables that lies within the conceptual framework. The result of using structural equation modeling shows that brand image has a positive impact on continuous usage intention. Firms can affect consumer perceived value and customer satisfaction through the creation of the brand image. It also shows that the brand image of smartphone and brand image of the operating system have a positive impact on customer perceived value and customer satisfaction. Furthermore, perceived value also has a positive impact on satisfaction, and so is the relation within satisfaction and perceived value to the continuous usage intention. Last but not least, the brand image of the smartphone has a more remarkable impact on customers than the brand image of the operating system. In addition, this study extends the results to management practice and suggests manufactures to provide fine product design and hardware.

Keywords: smartphone, brand image, perceived value, continuous usage intention

Procedia PDF Downloads 201
19600 To Investigate Quality of Life in Elderly Persons with Dementia Residing in Assisting Living Facility

Authors: Ya-Chuan Hsu, Wen-Chen Ouyang, Wei-Siang Huang

Abstract:

Problem/Background: With constantly increasing aged populations, quality of life (QOL) in persons with dementia has become a significant research concern. The Alzheimer’s Related Quality of Life (ADRQL) is a high-validated, theory-derived, and multidimensional instrument. It has widely utilized in many countries, except in Taiwan. However, diverse results of quality of life from different countries by using the same measurement can provide the potential to help understand the impact of cultural contributor on QOL. Objective: To investigate the extent to which quality of life on older adults with dementia in Taiwan. Methods: Cross-sectional, descriptive study conducted in an assisting living facility affiliated with a daycare center in southern Taiwan. A purposeful sample of 34 participants was recruited. Inclusion criteria included those who were at least 65 years old, able to communicate, and diagnosed with mild to moderate dementia. The QOL was measured by Chinese version ADRQL. This observational instrument consists of 30 items that is divided into five subscales with the full range of each subscale scores from 0 to 100.0. Higher scores indicate better QOL. Results: The means for subscale of the Social Interaction, Awareness of Self, Feelings and Mood, Enjoyment of Activities, and Response to Surroundings were 87.9, 74.7, 91.3, 64.5, and 90.3, respectively. The overall mean for the ADQOL was 0.83. Conclusion: Findings suggest that the level of Enjoyment of Activities is the lowest and may convey information about a need of evaluation on arrangement of facility’s activities.

Keywords: dementia, quality of life, elders, Alzheimer’s related quality of life

Procedia PDF Downloads 301
19599 Comparative Techno-Economic Assessment and LCA of Selected Integrated Sugarcane-Based Biorefineries

Authors: Edgard Gnansounoua, Pavel Vaskan, Elia Ruiz Pachón

Abstract:

This work addresses the economic and environmental performance of integrated biorefineries based on sugarcane juice and residues in the context of Brazil. We have considered four multiproduct scenarios; two from existing Brazilian sugar mills and the others from ethanol autonomous distilleries. They are integrated biorefineries producing first (1G) and second (2G) generation ethanol, sugar, molasses (for animal feed) and electricity. We show the results for the analysis and comparison of the different scenarios using a techno-economic value-based approach and LCA methodology. We have found that all the analysed scenarios show positive values of Climate change and Fossil depletion reduction as compared to the reference systems. However the scenario producing only ethanol shows less efficiency in Human toxicity, Freshwater ecotoxicity and Freshwater eutrophication impacts. The best economic configuration is provided by the scenario with the largest ethanol production. On the other hand, the best environmental performance is presented by the scenario with full integration sugar – 1G2G ethanol production. The integration of 2G based residues in a 1G ethanol production plant leads to positive environmental impacts compared to the conventional 1G industrial plant but proves to be more expensive.

Keywords: sugarcane, biorefinery, 1G/2G bioethanol integration, LCA, Brazil

Procedia PDF Downloads 352
19598 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 222
19597 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: fuel metering unit, stepping motor, AMESim/Matlab, full digital simulation

Procedia PDF Downloads 256
19596 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images

Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel

Abstract:

Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.

Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization

Procedia PDF Downloads 43
19595 VDGMSISS: A Verifiable and Detectable Multi-Secret Images Sharing Scheme with General Access Structure

Authors: Justie Su-Tzu Juan, Ming-Jheng Li, Ching-Fen Lee, Ruei-Yu Wu

Abstract:

A secret image sharing scheme is a way to protect images. The main idea is dispersing the secret image into numerous shadow images. A secret image sharing scheme can withstand the impersonal attack and achieve the highly practical property of multiuse  is more practical. Therefore, this paper proposes a verifiable and detectable secret image-sharing scheme called VDGMSISS to solve the impersonal attack and to achieve some properties such as encrypting multi-secret images at one time and multi-use. Moreover, our scheme can also be used for any genera access structure.

Keywords: multi-secret image sharing scheme, verifiable, de-tectable, general access structure

Procedia PDF Downloads 128
19594 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 332
19593 Interactive Image Search for Mobile Devices

Authors: Komal V. Aher, Sanjay B. Waykar

Abstract:

Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction.

Keywords: color space, histogram, mobile device, mobile visual search, multimodal search

Procedia PDF Downloads 370
19592 A Collaborative, Arts-Informed Action Research Investigation of Child-Led Assessment

Authors: Dragana Gnjatovic

Abstract:

Assessment is a burning topic in education policy and practice due to measurement-driven neoliberal agendas of quality and standardisation of assessment practice through high stakes standardised testing systems that are now influencing early childhood education. This paper presents a collaborative, arts-informed action research project which places children at the centre of their learning, with assessment as an integral part of play-based learning processes. It aims to challenge traditional approaches to assessment that are often teacher-led and decontextualised from the processes of learning through exploring approaches where children's voices are central, and their creative arts expressions are used to assess learning and development. The theoretical framework draws on Vygotsky's sociocultural theory and Freire's critical pedagogy, which indicate the importance of socially constructed reality where knowledge is the result of collaboration between children and adults. This reality perceives children as competent agents of their own learning processes. An interpretive-constructivist and critical-transformative paradigm underpin collaborative action research in a three to five-year-old setting, where creative methods like storytelling, play, drama, drawing are used to assess children's learning. As data collection and analysis are still in process, this paper will present the methodology and some data vignettes, with the aim of stimulating discussion about innovation in assessment and contribution of the collaborative enquiry in the field of Early Childhood Education and Care.

Keywords: assessment for learning, creative methodologies, collaborative action research, early childhood education and care

Procedia PDF Downloads 138
19591 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 454
19590 Analyzing the Association between Physical Activity and Sleep Quality in College Students: Cross-Sectional Study

Authors: Fildzah Badzlina, Mega Puspa Sari

Abstract:

To rest the body after a full day of activities, the body needs sleep. During sleep, the body's response to external stimuli will be reduced and relatively inactive so that it is used to optimize the body's biological functions that cannot be done when awake. College students often experience poor sleep quality because of the dense activities carried out during the day. In addition, the level of physical activity of college students is also relatively low. Based on previous research, college students who have low physical activity have poor sleep quality. Therefore, the purpose of this study was to determine the relationship between physical activity and sleep quality in college students of the University of Muhammadiyah Prof. Dr. Hamka. This study used a cross-sectional research design with 107 respondents as research subjects. Samples were taken using the purposive sampling technique. The data was taken using a google form which was distributed to all college students in September 2021. The statistical test used was Chi-square. The results of this study showed that 85 (79.4%) college students experienced poor sleep quality during the Covid-19 Pandemic Period. Most respondents were 96 women (89.7%) and 32.7% (35 people) aged 20 years. In the pocket money category, most college students (71%) got pocket money less than 500.000 rupiahs per month. A total of 52 respondents (48.6%) had a moderate level of physical activity category. Poor sleep quality was more common in male students (90.9%) compared to female students (78.1%) (p>0.05). In the group with poor sleep quality, 88.9% of students were categorized in Rp. 500.001 to Rp. 1.000.000 for pocket money, 80.3% of students included in the category Rp. 500.000 or less, and 61.5% of students are included in the category of Rp. 1.000.000 or more. Poor sleep quality was more common among students in the age category 20 years (84.1%), compared to students in the age category > 20 years (71.1%). For the level of physical activity in the poor sleep quality group, 87% were included in the category of heavy physical activity, 82.7% included in the moderate level of physical activity, and 68.8% included in the category of low-level physical activity. There was no significant relationship between gender, pocket money, age, and physical activity with sleep quality (p>0.05).

Keywords: college students, physical activity, sleep quality, university students

Procedia PDF Downloads 143
19589 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 505
19588 Heritage Tree Expert Assessment and Classification: Malaysian Perspective

Authors: B.-Y.-S. Lau, Y.-C.-T. Jonathan, M.-S. Alias

Abstract:

Heritage trees are natural large, individual trees with exceptionally value due to association with age or event or distinguished people. In Malaysia, there is an abundance of tropical heritage trees throughout the country. It is essential to set up a repository of heritage trees to prevent valuable trees from being cut down. In this cross domain study, a web-based online expert system namely the Heritage Tree Expert Assessment and Classification (HTEAC) is developed and deployed for public to nominate potential heritage trees. Based on the nomination, tree care experts or arborists would evaluate and verify the nominated trees as heritage trees. The expert system automatically rates the approved heritage trees according to pre-defined grades via Delphi technique. Features and usability test of the expert system are presented. Preliminary result is promising for the system to be used as a full scale public system.

Keywords: arboriculture, Delphi, expert system, heritage tree, urban forestry

Procedia PDF Downloads 316