Search results for: enterprise data warehouse
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25514

Search results for: enterprise data warehouse

24944 Mapping New Technologies for Sustainability along the Fashion Supply Chain

Authors: Hilde Heim

Abstract:

The textile industry is known for its swift adoption of innovations in fashion technology (Fash-Tech). The industry is also known for its harmful effects on the environment. Opportunely, Fash-Tech is expected to facilitate the turn towards more sustainable practice. However, although several technologies have the potential for advancing sustainable practice, many industry players, whether large or small, are confused and misinformed about Fash-Tech adoption, application, and impact. Through a visual poster presentation, this project aims to map global fashion innovations along the supply chain from fibre production to waste management, thus providing a clearer picture of numbers, scale, and adoption. While the project aims to identify Fash-Tech effectiveness in reaching sustainability goals, it also identifies areas of congestion as well as insufficiency in the accessibility of Fash-Tech. This project intends to help inform future decisions in business, investment, and policy for the advancement of sustainable practice.

Keywords: fashion technology, sustainability, supply chain, enterprise management

Procedia PDF Downloads 241
24943 Contagious Corporate Reputation Risk: Uncovering the Pandemic’s Impact

Authors: Yawen Xia, Rubi Yang, Jing Zhao

Abstract:

By using the Reputation Risk Index (RRI) to measure company environmental, social, and governance (ESG) activities, this research studies firms’ ESG comovement with their industry and local peers. This comovement is attenuated during the Covid-19 pandemic. Further analysis shows that corporate governance plays an important role in comovement decrease. We classify companies by region (city, state, region) and industry and calculate the average RRI of companies of the same type. We run separate regressions to test 1) industry comovement; 2) local comovement; 3) Covid-19 pandemic and reputation risk comovement; 4) corporate governance and reputation risk comovement. Our findings are consistent with previous literature that companies follow their industry and local counterparts in engaging in irresponsible activities and reducing ESG engagement. We speculate Covid shock led to a reduction in social activities and information sharing among enterprise managers, and comovement between enterprises, as a result, decreased during the pandemic.

Keywords: ESG, Covid, peer pressure, local comovement, corporate governance

Procedia PDF Downloads 135
24942 Thriving Private-Community Partnerships in Ecotourism: Perspectives from Fiji’s Upper Navua Conservation Area

Authors: Jeremy Schultz, Kelly Bricker

Abstract:

Ecotourism has proven itself to be a forerunner in the advancement of environmental conservation all the while supporting cultural tradition, uniqueness, and pride among indigenous communities. Successful private-community partnerships associated with ecotourism operations are vital to the overall prosperity of both the businesses and the local communities. Such accomplishments can be seen through numerous livelihood goals including income, food security, health, reduced vulnerability, governance, and empowerment. Private-community partnerships also support global initiatives such as the sustainable development goals and sustainable development frameworks including those proposed by the United Nations World Tourism Organization (WTO). Understanding such partnerships assists not only large organizations such as the WTO, but it also benefits smaller ecotourism operators and entrepreneurs who are trying to achieve their sustainable tourism development goals. This study examined the partnership between an ecotourism company (Rivers Fiji) and two rural villages located in Fiji’s Upper Navua Conservation Area. Focus groups were conducted in each village. Observation journals were also used to record conversations outside of the focus groups. Data were thematically organized and analyzed to offer researcher interpretations and understandings. This research supported the notion that respectful and emboldening partnerships between communities and private enterprise are vital to the composition of successful ecotourism operations that support sustainable development protocol. Understanding these partnerships can assist in shaping future ecotourism development and re-molding existing businesses. This study has offered an example of a thriving partnership through community input and critical researcher analysis. Research has identified six contributing factors to successful ecotourism partnerships, and this study provides additional support to that framework.

Keywords: community partnerships, conservation areas, ecotourism, Fiji, sustainability

Procedia PDF Downloads 135
24941 Analysing Industry Clustering to Develop Competitive Advantage for Wualai Silver Handicraft

Authors: Khanita Tumphasuwan

Abstract:

The Wualai community of Northern Thailand represents important intellectual and social capital and their silver handicraft products are desirable tourist souvenirs within Chiang Mai Province. This community has been in danger of losing this social and intellectual capital due to the application of an improper tool, the Scottish Enterprise model of clustering. This research aims to analyze and increase its competitive advantages for preventing the loss of social and intellectual capital. To improve the Wualai’s competitive advantage, analysis is undertaken using a Porterian cluster approach, including the diamond model, five forces model and cluster mapping. Research results suggest that utilizing the community’s Buddhist beliefs can foster collaboration between community members and is the only way to improve cluster effectiveness, increase competitive advantage, and in turn conserve the Wualai community.

Keywords: industry clustering, silver handicraft, competitive advantage, intellectual capital, social capital

Procedia PDF Downloads 566
24940 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 559
24939 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 147
24938 Comprehensive Study of Data Science

Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly

Abstract:

Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.

Keywords: data science, machine learning, data analytics, artificial intelligence

Procedia PDF Downloads 82
24937 Proactive WPA/WPA2 Security Using DD-WRT Firmware

Authors: Mustafa Kamoona, Mohamed El-Sharkawy

Abstract:

Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.

Keywords: Wi-Fi, WPS, TLS, DD-WRT

Procedia PDF Downloads 233
24936 A Fast Optimizer for Large-scale Fulfillment Planning based on Genetic Algorithm

Authors: Choonoh Lee, Seyeon Park, Dongyun Kang, Jaehyeong Choi, Soojee Kim, Younggeun Kim

Abstract:

Market Kurly is the first South Korean online grocery retailer that guarantees same-day, overnight shipping. More than 1.6 million customers place an average of 4.7 million orders and add 3 to 14 products into a cart per month. The company has sold almost 30,000 kinds of various products in the past 6 months, including food items, cosmetics, kitchenware, toys for kids/pets, and even flowers. The company is operating and expanding multiple dry, cold, and frozen fulfillment centers in order to store and ship these products. Due to the scale and complexity of the fulfillment, pick-pack-ship processes are planned and operated in batches, and thus, the planning that decides the batch of the customers’ orders is a critical factor in overall productivity. This paper introduces a metaheuristic optimization method that reduces the complexity of batch processing in a fulfillment center. The method is an iterative genetic algorithm with heuristic creation and evolution strategies; it aims to group similar orders into pick-pack-ship batches to minimize the total number of distinct products. With a well-designed approach to create initial genes, the method produces streamlined plans, up to 13.5% less complex than the actual plans carried out in the company’s fulfillment centers in the previous months. Furthermore, our digital-twin simulations show that the optimized plans can reduce 3% of operation time for packing, which is the most complex and time-consuming task in the process. The optimization method implements a multithreading design on the Spring framework to support the company’s warehouse management systems in near real-time, finding a solution for 4,000 orders within 5 to 7 seconds on an AWS c5.2xlarge instance.

Keywords: fulfillment planning, genetic algorithm, online grocery retail, optimization

Procedia PDF Downloads 83
24935 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
24934 Interpreting Privacy Harms from a Non-Economic Perspective

Authors: Christopher Muhawe, Masooda Bashir

Abstract:

With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.

Keywords: data breach and misuse, economic harms, privacy harms, psychological harms

Procedia PDF Downloads 195
24933 Industrial and Environmental Safety in the Integrated Security Policy of the Industry: A Corporation and an Enterprise

Authors: Vladimir A. Grachev

Abstract:

Today, in the context of rapidly developing technosphere and hourly emerging new technologies, the industrial and environmental safety issue is ever more pressing. The article is devoted to the relationship of social, environmental, and industrial policies with industrial safety, occupational health and safety, environmental safety, and environmental protection. The author assesses the up-to-day situation through system analysis and on the basis of the existing practices. A complex system of the policies implementation without "gaps" and missing links ensures preservation of human lives, health and a favorable living environment. The author demonstrates that absence of an "environmental safety" high-priority link can lead to a significant loss of human lives and health and the global changes in the environment. The role of implementing the environmental policy of enterprises and organizations, and of economic sectors in the implementation of national environmental policy is shown. It was established that the system for implementing environmental policy should be based on a system analysis.

Keywords: environmental protection, environmental safety, industrial safety, occupational health and safety

Procedia PDF Downloads 215
24932 Diffusion of Social Innovation in Thai Community Enterprises

Authors: Thanisa Sirithaporn

Abstract:

The study aims to examine the diffusion of social innovation among Thai Community Enterprises in conjunction with a singular case study of a medium-sized corporation that has successfully transitioned from a charitable foundation to a sustainable, profitable entity creating value for both shareholders and the communities in which it operates. It seeks to bridge the gap between different streams of aligned research in the fields of diffusion, social innovation, and community enterprises into a more cohesive conceptual framework and thus to better understand the historical and current impediments that have resulted in so many enterprises failing to be sustainable. The methodology is mixed and dual phased. The initial quantitative phase uses a questionnaire as the main research instrument distributed among community enterprises throughout Thailand which will provide the themes for the qualitative phase through semi-structured interviews with key stakeholders at a commercial enterprise actively engaged in social innovation. The findings seek to present a more comprehensive conceptual framework and actionable guidelines to aid community enterprises to develop social innovation in a sustainable manner that creates value to its beneficiaries.

Keywords: diffusion, community enterprises, social innovation, Thailand

Procedia PDF Downloads 133
24931 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
24930 Drugs, Silk Road, Bitcoins

Authors: Lali Khurtsia, Vano Tsertsvadze

Abstract:

Georgian drug policy is directed to reduce the supply of drugs. Retrospective analysis has shown that law enforcement activities have been followed by the expulsion of particular injecting drugs. The demand remains unchanged and drugs are substituted by the hand-made, even more dangerous homemade drugs entered the market. To find out expected new trends on the Georgian drug market, qualitative study was conducted with Georgian drug users to determine drug supply routes. It turned out that drug suppliers and consumers for safety reasons and to protect their anonymity, use Skype to make deals. IT in illegal drug trade is even more sophisticated in the worldwide. Trading with Bitcoins in the Darknet ensures high confidentiality of money transactions and the safe circulation of drugs. In 2014 largest Bitcoin mining enterprise in the world was built in Georgia. We argue that the use of Bitcoins and Darknet by Georgian drug consumers and suppliers will be an incentive to response adequately to the government's policy of restricting supply in order to satisfy market demand for drugs.

Keywords: bitcoin, darknet, drugs, policy

Procedia PDF Downloads 439
24929 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation

Procedia PDF Downloads 412
24928 Data Access, AI Intensity, and Scale Advantages

Authors: Chuping Lo

Abstract:

This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.

Keywords: digital intensity, digital divide, international trade, scale of economics

Procedia PDF Downloads 68
24927 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 412
24926 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 257
24925 Location Choice of Firms in an Unequal Length Streets Model: Game Theory Approach as an Extension of the Spoke Model

Authors: Kiumars Shahbazi, Salah Salimian, Abdolrahim Hashemi Dizaj

Abstract:

Locating is one of the key elements in success and survival of industrial centers and has great impact on cost reduction of establishment and launching of various economic activities. In this study, streets with unequal length model have been used that is the classic extension of Spoke model; however with unlimited number of streets with uneven lengths. The results showed that the spoke model is a special case of streets with unequal length model. According to the results of this study, if the strategy of enterprises and firms is to select both price and location, there would be no balance in the game. Furthermore, increased length of streets leads to increased profit of enterprises and with increased number of streets, the enterprises choose locations that are far from center (the maximum differentiation), and the enterprises' output will decrease. Moreover, the enterprise production rate will incline toward zero when the number of streets goes to infinity, and complete competition outcome will be achieved.

Keywords: locating, Nash equilibrium, streets with unequal length model, streets with unequal length model

Procedia PDF Downloads 203
24924 Profit and Nonprofit Sports Clubs, Financial and Organizational Comparison in Poland

Authors: Igor Perechuda, Wojciech Cieśliński

Abstract:

The paper identifies the features of Polish sports clubs in the particular organizational forms: profit and nonprofit. Identification and description of these features is carried out in terms of financial efficiency of the given organizational form. Under the terms of the efficiency the research allows you to specify the advantages of particular organizational sports club form and the following limitations. Paper considers features of sports clubs in range of Polish conditions as legal regulations. The sources of the functioning efficiency of sports clubs may lie in the organizational forms in which they operate. Each of the available forms can be considered either a for-profit or nonprofit enterprise. Depending on this classification there are different capabilities of increasing organizational and financial efficiency of a given sports club. Authors start with general classification and difference between for-profit and non-profit sport clubs. Next identifies specific financial and organizational conditions of both organizational form and then show examples of mixed activity forms and their efficiency effect.

Keywords: financial efficiency, for-profit, non-profit, sports club

Procedia PDF Downloads 547
24923 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 135
24922 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 135
24921 Competitive Advantage Effecting Firm Performance: Case Study of Small and Medium Enterprises in Thailand

Authors: Somdech Rungsrisawas

Abstract:

The objectives of this study are to examine the relationship between the competitive advantage of small and medium enterprises (SMEs) and their overall performance. A mixed method has been applied to identify the effect of determinants toward competitive advantage. The sample is composed of SMEs in product and service businesses. The study has been tested at an organizational level with samples of SME entrepreneurs, business successors, and board of directors or management team. Quantitative analysis has been conducted through multiple regression analysis with 400 samples. The findings illustrate that each aspect of competitive advantage needs a different set of driving factors to explain either the direct or the indirect effect on firm performance. Interestingly, technological capability is a perfect mediator and interorganizational cooperation toward competitive advantage. In addition, differentiation is difficult to be perceived by customers, as well as difficult to manage; however, it is considered important to develop an SMEs product or service for firm sustainably.

Keywords: competitive advantage, firm performance, technological capability, Small and Medium Enterprise (SMEs)

Procedia PDF Downloads 297
24920 The Role of Financial and Non-Financial Institutions in Promoting Entrepreneurship in Micro small and Medium Enterprises

Authors: Lemuel David

Abstract:

The importance of the Micro, Small, and Medium Enterprises sector is well recognized for its legitimate contribution to the Macroeconomic objectives of the Republic of Liberia, like generation of employment, input t, exports, and enhancing entrepreneurship. Right now, Medium and Small enterprises accounts for about 99 percent of the industrial units in the country, contributing 60 percent of the manufacturing sector output and approximately one-third of the nation’s exports. The role of various financial institutions like ECO bank and Non-financial Institutions like Bearch Limited support promoting the growth of Micro, Small, and Medium Enterprises is unique. A small enterprise or entrepreneur gets many types of assistance from different institutions for varied purposes in the course of his entrepreneurial journey. This paper focuses on the factors related to financial institutional support and non-financial institutional support entrepreneurs to the growth of Medium and Small enterprises in the Republic of Liberia. The significance of this paper is to support Policy and Institutional Support for Medium and Small enterprises to know the views of entrepreneurs about financial and non-financial support systems in the Republic of Liberia. This study was carried out through a survey method, with the use of questionnaires. The population for this study consisted of all registered Medium and Small enterprises which have been registered during the years 2004-2014 in the republic of Liberia. The sampling method employed for this study was a simple random technique and determined a sample size of 400. Data for the study was collected using a standard questionnaire. The questionnaire consisted of two parts: the first part consisted of questions on the profile of the respondents. The second part covers (1) financial, promotional factors and (2) non-financial promotional factors. The results of the study are based on financial and non-financial supporting activities provided by institutions to Medium and Small enterprises. After investigation, it has been found that there is no difference in the support given by Financial Institutions and non-financial Institutions. Entrepreneurs perceived “collateral-free schemes and physical infrastructure support factors are highest contributing to entry and growth of Medium and Small enterprises.

Keywords: micro, small, and medium enterprises financial institutions, entrepreneurship

Procedia PDF Downloads 98
24919 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
24918 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 93
24917 Adaptation Actions in Companies as Theoretical and Practical Aspects: A Case Study of a Food Ingredients and Additives Producer

Authors: Maja Sajdak

Abstract:

The aim of this article is to identify the measures companies undertake in order to adapt to the environment as well as discussing their diversity and effectiveness. The research methods used in the study include an in-depth analysis of the literature and a case study, which helps to illustrate the issue in question. Referring to the concept of agility, which is firmly embedded in the theory of strategic management and has been developed with the aim of adapting to the environment and its changes, the paper first examines different types of adaptation measures for companies. Then the issue under discussion is illustrated with the example of the company Hortimex. This company is an eminent representative of the world’s leading manufacturers of food additives and ingredients. The company was established in 1988 and is a family business, which in practice means that it conducts business in a responsible manner, observing the law and respecting the interests of society and the environment. The company’s mission is to develop a market in Poland for the products and solutions offered by their partners and to share their knowledge of additives in food production and consumption.

Keywords: adaptation measures, agile enterprise, flexibility, unanticipated changes

Procedia PDF Downloads 229
24916 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 157
24915 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 593