Search results for: deep profile control
13768 Podemos Party Origin: From Social Protest to Spanish Parliament
Authors: Víctor Manuel Muñoz-Sánchez, Antonio Manuel Pérez-Flores
Abstract:
This paper analyzes the institutionalization of social protest in Spain. In the current crisis Podemos party seems to represent the political positions of the most affected citizens by the economic situation. It studies using quantitative techniques (statistical bivariate analysis), focusing on the exploitation of several bases of statistics data from the Center for Sociological and Research of Spanish Government, 15M movement characterization to its institutionalization in the Podemos party. Making a comparison between the participant's profile by the 15M and the social bases of Podemos votes. Data on the transformation of the socio-demographic profile of the fans, connoisseurs and 15M participants and voters are given.Keywords: collective action, emerging parties, political parties, social protest
Procedia PDF Downloads 38513767 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.Keywords: voltage source inverter, space vector pulse width modulation, model predictive control, comparison
Procedia PDF Downloads 50613766 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 35013765 Cephalometric Changes of Patient with Class II Division 1 [Malocclusion] Post Orthodontic Treatment with Growth Stimulation: A Case Report
Authors: Pricillia Priska Sianita
Abstract:
An aesthetic facial profile is one of the goals in Orthodontics treatment. However, this is not easily achieved, especially in patients with Class II Division 1 malocclusion who have the clinical characteristics of convex profile and significant skeletal discrepancy due to mandibular growth deficiency. Malocclusion with skeletal problems require proper treatment timing for growth stimulation, and it must be done in early age and in need of good cooperation from the patient. If this is not done and the patient has passed the growth period, the ideal treatment is orthognathic surgery which is more complicated and more painful. The growth stimulation of skeletal malocclusion requires a careful cephalometric evaluation ranging from diagnosis to determine the parts that require stimulation to post-treatment evaluation to see the success achieved through changes in the measurement of the skeletal parameters shown in the cephalometric analysis. This case report aims to describe skeletal changes cephalometrically that were achieved through orthodontic treatment in growing period. Material and method: Lateral Cephalograms, pre-treatment, and post-treatment of cases of Class II Division 1 malocclusion is selected from a collection of cephalometric radiographic in a private clinic. The Cephalogram is then traced and measured for the skeletal parameters. The result is noted as skeletal condition data of pre-treatment and post-treatment. Furthermore, superimposition is done to see the changes achieved. The results show that growth stimulation through orthodontic treatment can solve the skeletal problem of Class II Division 1 malocclusion and the skeletal changes that occur can be verified through cephalometric analysis. The skeletal changes have an impact on the improvement of patient's facial profile. To sum up, the treatment timing on a skeletal malocclusion is very important to obtain satisfactory results for the improvement of the aesthetic facial profile, and skeletal changes can be verified through cephalometric evaluation of pre- and post-treatment.Keywords: cephalometric evaluation, class II division 1 malocclusion, growth stimulation, skeletal changes, skeletal problems
Procedia PDF Downloads 24713764 Component Lifecycle and Concurrency Model in Usage Control (UCON) System
Authors: P. Ghann, J. Shiguang, C. Zhou
Abstract:
Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.Keywords: access control, concurrency, digital container, usage control
Procedia PDF Downloads 31913763 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 6613762 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis
Authors: Syed Amer Mahmood, Rao Mansor Ali Khan
Abstract:
This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT
Procedia PDF Downloads 34513761 Integrating Wound Location Data with Deep Learning for Improved Wound Classification
Authors: Mouli Banga, Chaya Ravindra
Abstract:
Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.Keywords: wound classification, MobileNetV2, ResNet50, multimodel
Procedia PDF Downloads 3113760 Study of Hypertension at Sohag City: Upper Egypt Experience
Authors: Aly Kassem, Eman Sapet, Eman Abdelbaset, Hosam Mahmoud
Abstract:
Objective: Hypertension is an important public health challenge being one of the most common worldwide disease-affecting human. Our aim is to study the clinical characteristics, therapeutic regimens, treatment compliance, and risk factors in a sector of of hypertensive patients at Sohag City. Subject and Methods: A cross sectional study; conducted in Sohag city; it involved 520 patients; males (45.7 %) and females (54.3 %). Their ages ranged between 35-85 years. BP measurements, BMI, blood glucose, Serum creatinine, urine analysis, serum Lipids, blood picture and ECG were done all the studied patients. Results: Hypertension presented more between non-smokers (72.55%), females (54.3%), educated patients (50.99%) and patients with low SES (54.9%). CAD presented in (51.63%) of patients, while laboratory investigations showed hyperglycaemia in (28.7%), anemia in (18.3%), high serum creatinine level in (8.49%) and proteinuria in (10.45%) of patient. Adequate BP control was achieved in (49.67%); older patients had lower adequacy of BP control in spite of the extensive use of multiple-drug therapy. Most hypertensive patients had more than one coexistent CV risk factor. Aging, being a female (54.3%), DM (32.3%), family history of hypertension (28.7%), family history of CAD (25.4%), and obesity (10%) were the common contributing risk factors. ACE-inhibitors were prescribed in (58.16%), Beta-blockers in (34.64%) of the patients. Monotherapy was prescribed for (41.17%) of the patients. (75.81%) of patients had regular use of their drug regimens. (49.67%) only of patients had their condition under control, the number of drugs was inversely related to BP control. Conclusion: Hypertensive patients in Sohag city had a profile of high CV risks, and poor blood pressure control particularly in the elderly. A multidisciplinary approach for routine clinical check-up, follow-up, physicians and patients training, prescribing simple once-daily regimens and encouraging life style modifications are recommended. Anti hypertensives, hypertension, elderly patients, risk factors, treatment compliance.Keywords: anti hypertensives, hypertension, elderly patients, risk factors, treatment compliance
Procedia PDF Downloads 30413759 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems
Authors: Ting Gao, Mingyue He
Abstract:
Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning
Procedia PDF Downloads 14913758 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller
Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss
Abstract:
This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.Keywords: DFIG, RST, vector control, wind turbine
Procedia PDF Downloads 65713757 Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration
Authors: S. E. Mohmad-Saberi, W. Song, N. Oliver, M. Adrian, T.C. Hsu, A. Darbyshire
Abstract:
Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds.Keywords: biodegradable, hydrogen peroxide solution, POSS-EDSS-PU, sterilization
Procedia PDF Downloads 15813756 Need for a Tailor Made HIV Prevention Services to the Migrants Community: Evidence from Implementing Migrant Service Delivery System (MSDS) among Migrant Workers, National AIDS Control Program, and India
Authors: Debasish Chowdhury, Sunil Mekale, Sarvanamurthy Sakthivel, Sukhvinder Kaur, Rambabu Khambampati, Ashok Agarwal
Abstract:
Introduction: The migrant intervention in India was initiated during the National AIDS Control Program (NACP) Phase-2 (2002-2007). HIV Sentinel surveillance Studies (HSS) conducted in 2012-13 indicated higher HIV prevalence among migrants (0.99%) compared to general populations (0.35%). Migrants continue to bear a heightened risk of HIV infection which results from the condition and structure of the migration process. USAID PHFI-PIPPSE project in collaboration with the National AIDS Control Organization (NACO) developed a unique system called Migrant Service Delivery System (MSDS) to capture migrants profile with respect to their risk profile and to provide tailor made services to them. Description: MSDS is a web-based system, designed and implemented to increase service uptake among migrants through evidence based planning. 110 destination migrants Targeted Intervention (TI) from 11 states were selected for study with varied target populations in terms of occupations; to understand occupation related risk behaviors among the migrants. Occupation wise registration data of high risk vulnerable migrants were analyzed through MSDS for the period April 2014–June 2016. Analysis was made on specific indicators among these occupational groups to understand the risk behavior and their vulnerability to HIV and STIs. Findings: Out of total HIV positive migrant’s workers (N= 847) enrolled in MSDS HIV rate is found to be highest among Auto-Rickshaw (18.66%) followed by Daily wage laborers (14.46%), Loom workers (10.73%), Industrial workers (10.04%) and Construction worker 7.93%. With 45.14% positivity, industrial workers are found to be most vulnerable to Sexually Transmitted Infections (STIs) (N=10057) among all occupational categories followed by loom workers (16.28%), Skilled worker (Furniture, Jeweler)-7.14%, daily wage laborers (5.45%). Conclusion: MSDS is an effective tool to assess migrants’ risk and their vulnerability to HIV for designing evidence informed program. This system calls for a replication across all destination TIs by NACO for differential strategies for different occupation groups to ensure better yield through scientific planning of intervention among high risk and high vulnerable migrants.Keywords: migrants, migrant service delivery system, risk, vulnerability
Procedia PDF Downloads 26913755 Xenografts: Successful Penetrating Keratoplasty Between Two Species
Authors: Francisco Alvarado, Luz Ramírez
Abstract:
Corneal diseases are one of the main causes of visual impairment and affect almost 4 million, and this study assesses the effects of deep anterior lamellar keratoplasty (DALK) with porcine corneal stroma and postoperative topical treatment with tacrolimus in patients with infectious keratitis. No patient was observed with clinical graft rejection. Among the cases: 2 were positive to fungal culture, 2 with Aspergillus and the other 8 cases were confirmed by bacteriological culture. Corneal diseases are one of the main causes of visual impairment and affect almost 4 million. This study assesses the effects of deep anterior lamellar keratoplasty (DALK) with porcine corneal stroma and postoperative topical treatment with tacrolimus in patients with infectious keratitis. Receiver bed diameters ranged from 7.00 to 9.00 mm. No incidents of Descemet's membrane perforation were observed during surgery. During the follow-up period, no corneal graft splitting, IOP increase, or intolerance to tacrolimus were observed. Deep anterior lamellar keratoplasty seems to be the best option to avoid xenograft rejection, and it could help new surgical techniques in humans.Keywords: ophthalmology, cornea, corneal transplant, xenografts, surgical innovations
Procedia PDF Downloads 8213754 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 9613753 Renoprotective Effect of Alcoholic Extract of Bacopa monnieri via Inhibition of Advanced Glycation End Products and Oxidative Stress in Stz-Nicotinamide Induced Diabetic Nephropathy
Authors: Lalit Kishore, Randhir Singh
Abstract:
Diabetic nephropathy (DN) is the major cause of morbidity among diabetic patients. In this study, the effect of Bacopa monnieri Linn. (Brahmi, BM), was studied in a Streptozotocin (STZ)-induced experimental rat model of DN. Diabetic nephropathy was induced in Male Wistar rats (body weight- 300± 10 gms) by single intra-peritoneal injection of STZ (45mg/kg, i.p.) after 15 min of Nicotinamide (230 mg/kg) administration. Different doses of alcoholic extract i.e. 100, 200 and 400 mg/kg was given for 45 days by oral gavage after induction of DN. Blood glucose level, serum insulin, glycosylated haemoglobin, renal parameters (serum urea, uric acid, creatinine and BUN) and lipid profile (total cholesterol, triglycerides, HDL, LDL and VLDL levels) were measured. Concentration of thiobarbituric acid reactive species (TBARS) and levels of antioxidant enzymes of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the kidney, liver and pancreas. At the end of treatment period the alcoholic extract of BM reduced the elevated level of blood glucose, serum insulin, renal parameters, lipid levels, TBARS, AGE’s in kidney and significantly increased body weight, HDL and antioxidant enzymes in dose dependent manner as compared to diabetic control animals. These results suggested the BM possesses significant renoprotective activity.Keywords: AGE's, lipid profile, oxidative stress, renal parameters
Procedia PDF Downloads 32113752 Application of Electronic Nose Systems in Medical and Food Industries
Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni
Abstract:
Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.Keywords: e-nose, low cost, odor detection, food safety
Procedia PDF Downloads 13913751 The Use of Random Set Method in Reliability Analysis of Deep Excavations
Authors: Arefeh Arabaninezhad, Ali Fakher
Abstract:
Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty
Procedia PDF Downloads 26713750 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 8313749 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 23113748 Relationship of Arm Acupressure Points and Thai Traditional Massage
Authors: Boonyarat Chaleephay
Abstract:
The purpose of this research paper was to describe the relationship of acupressure points on the anterior surface of the upper limb in accordance with Applied Thai Traditional Massage (ATTM) and the deep structures located at those acupressure points. There were 2 population groups; normal subjects and cadaver specimens. Eighteen males with age ranging from 20-40 years old and seventeen females with ages ranging from 30-97 years old were studies. This study was able to obtain a fundamental knowledge concerning acupressure point and the deep structures that related to those acupressure points. It might be used as the basic knowledge for clinically applying and planning treatment as well as teaching in ATTM.Keywords: acupressure point (AP), applie Thai traditional medicine (ATTM), paresthesia, numbness
Procedia PDF Downloads 23913747 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 60213746 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia PDF Downloads 26013745 Investigation of Deep Eutectic Solvents for Microwave Assisted Extraction and Headspace Gas Chromatographic Determination of Hexanal in Fat-Rich Food
Authors: Birute Bugelyte, Ingrida Jurkute, Vida Vickackaite
Abstract:
The most complicated step of the determination of volatile compounds in complex matrices is the separation of analytes from the matrix. Traditional analyte separation methods (liquid extraction, Soxhlet extraction) require a lot of time and labour; moreover, there is a risk to lose the volatile analytes. In recent years, headspace gas chromatography has been used to determine volatile compounds. To date, traditional extraction solvents have been used in headspace gas chromatography. As a rule, such solvents are rather volatile; therefore, a large amount of solvent vapour enters into the headspace together with the analyte. Because of that, the determination sensitivity of the analyte is reduced, a huge solvent peak in the chromatogram can overlap with the peaks of the analyts. The sensitivity is also limited by the fact that the sample can’t be heated at a higher temperature than the solvent boiling point. In 2018 it was suggested to replace traditional headspace gas chromatographic solvents with non-volatile, eco-friendly, biodegradable, inexpensive, and easy to prepare deep eutectic solvents (DESs). Generally, deep eutectic solvents have low vapour pressure, a relatively wide liquid range, much lower melting point than that of any of their individual components. Those features make DESs very attractive as matrix media for application in headspace gas chromatography. Also, DESs are polar compounds, so they can be applied for microwave assisted extraction. The aim of this work was to investigate the possibility of applying deep eutectic solvents for microwave assisted extraction and headspace gas chromatographic determination of hexanal in fat-rich food. Hexanal is considered one of the most suitable indicators of lipid oxidation degree as it is the main secondary oxidation product of linoleic acid, which is one of the principal fatty acids of many edible oils. Eight hydrophilic and hydrophobic deep eutectic solvents have been synthesized, and the influence of the temperature and microwaves on their headspace gas chromatographic behaviour has been investigated. Using the most suitable DES, microwave assisted extraction conditions and headspace gas chromatographic conditions have been optimized for the determination of hexanal in potato chips. Under optimized conditions, the quality parameters of the prepared technique have been determined. The suggested technique was applied for the determination of hexanal in potato chips and other fat-rich food.Keywords: deep eutectic solvents, headspace gas chromatography, hexanal, microwave assisted extraction
Procedia PDF Downloads 19213744 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 23913743 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 43013742 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter
Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache
Abstract:
In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.Keywords: drives, inverter, multi-phase induction machine, vector control
Procedia PDF Downloads 47813741 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries
Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun
Abstract:
This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil
Procedia PDF Downloads 11513740 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 13413739 Synchronization of a Perturbed Satellite Attitude Motion
Authors: Sadaoui Djaouida
Abstract:
In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.Keywords: predictive control, synchronization, satellite attitude, control engineering
Procedia PDF Downloads 554