Search results for: computer aided detection and diagnosis
6682 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 1256681 Usability Evaluation of Rice Doctor as a Diagnostic Tool for Agricultural Extension Workers in Selected Areas in the Philippines
Authors: Jerome Cayton Barradas, Rowely Parico, Lauro Atienza, Poornima Shankar
Abstract:
The effective agricultural extension is essential in facilitating improvements in various agricultural areas. One way of doing this is through Information and communication technologies (ICTs) like Rice Doctor (RD), an app-based diagnostic tool that provides accurate and timely diagnosis and management recommendations for more than 80 crop problems. This study aims to evaluate the RD usability by determining the effectiveness, efficiency, and user satisfaction of RD in making an accurate and timely diagnosis. It also aims to identify other factors that affect RD usability. This will be done by comparing RD with two other diagnostic methods: visual identification-based diagnosis and reference-guided diagnosis. The study was implemented in three rice-producing areas and has involved 96 extension workers. Respondents accomplished a self-administered survey and participated in group discussions. Data collected was then subjected to qualitative and quantitative analysis. Most of the respondents were satisfied with RD and believed that references are needed in assuring the accuracy of diagnosis. The majority found it efficient and easy to use. Some found it confusing and complicated, but this is because of their unfamiliarity with RD. Most users were also able to achieve accurate diagnosis proving effectiveness. Lastly, although users have reservations, they are satisfied and open to using RD. The study also found out the importance of visual identification skills in using RD and the need for capacity development and improvement of access to RD devices. From these results, the following are recommended to improve RD usability: review and upgrade diagnostic keys, expand further RD content, initiate capacity development for AEWs, and prepare and implement an RD communication plan.Keywords: agricultural extension, crop protection, information and communication technologies, rice doctor
Procedia PDF Downloads 2536680 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols
Authors: V. Verma, Syed Riyaz-ul-Hassan
Abstract:
Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus
Procedia PDF Downloads 5136679 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1166678 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4376677 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen
Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi
Abstract:
In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization
Procedia PDF Downloads 3396676 Placenta Parenchymal Dysplasia: When to Depend on Color Doppler and MRI
Authors: Bernard Olumide Ewuoso, Asma Gharaibeh
Abstract:
Rationale: Placental mesenchymal dysplasia (PMD) resembles molar pregnancy quite a bit. Although there have been documented live births of healthy babies, obtaining an objective diagnosis is crucial to assisting the mother in making an educated decision on what option of management she would like to explore. Prenatal invasive testing is recommended to help obtain an objective diagnosis in cases of abnormal placenta. We present a 23-year-old who, at 14 weeks, had ultrasonographic findings suggestive of placental mesenchymal dysplasia. She was offered prenatal invasive testing but declined and opted for surgical management, with a diagnosis of PMD confirmed on histopathology. There will be occasions such as this when prenatal invasive testing is declined. In these situations, careful consideration can be given to color Doppler and MRI, especially if the patient decides to keep pregnancy.Keywords: placental mesenchymal dysplasisa, molar pregnancy, prenatal invasive testing, Color doppler, MRI
Procedia PDF Downloads 236675 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 1686674 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection
Authors: Weihao Wang, Zhulin Zong
Abstract:
Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals
Procedia PDF Downloads 786673 Tool for Fast Detection of Java Code Snippets
Authors: Tomáš Bublík, Miroslav Virius
Abstract:
This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.Keywords: AST, Java, tree matching, scripthon source code recognition
Procedia PDF Downloads 4256672 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 206671 Future Education: Changing Paradigms
Authors: Girish Choudhary
Abstract:
Education is in a state of flux. Not only one need to acquire skills in order to cope with a fast changing global world, an explosive growth in technology, on the other hand is providing a new wave of teaching tools - computer aided video instruction, hypermedia, multimedia, CD-ROMs, Internet connections, and collaborative software environments. The emerging technology incorporates the group qualities of interactive, classroom-based learning while providing individual students the flexibility to participate in an educational programme at their own time and place. The technology facilitating self learning also seems to provide a cost effective solution to the dilemma of delivering education to masses. Online education is a unique learning domain that provides for many to many communications as well. The computer conferencing software defines the boundaries of the virtual classroom. The changing paradigm provides access of instruction to a large proportion of society, promises a qualitative change in the quality of learning and echoes a new way of thinking in educational theory that promotes active learning and open new learning approaches. Putting it to practice is challenging and may fundamentally alter the nature of educational institutions. The subsequent part of paper addresses such questions viz. 'Do we need to radically re-engineer the curriculum and foster an alternate set of skills in students?' in the onward journey.Keywords: on-line education, self learning, energy and power engineering, future education
Procedia PDF Downloads 3286670 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 3016669 Diagnosis and Treatment of Sleep Disorders
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Introduction: There are many different types of sleep disorders, each with serious implications for a person's health and a large financial burden on society. Method: This review offers a framework based on the International Classification of Sleep Disorders to aid in the diagnosis and treatment of sleep disorders. Differentiating between primary and secondary insomnia is covered, along with pharmacological and nonpharmacological therapy options. Common abnormalities of the circadian rhythm are mentioned along with their therapies, such as light therapy and chronotherapy. This article discusses the identification and management of periodic limb movement disorder and restless legs syndrome. The therapy of upper airway resistance syndrome and obstructive sleep apnea are the main topics of discussion. Conclusion: The range of narcolepsy symptoms and results, as well as diagnostic procedures and treatment, are discussed. The causes, outcomes, and treatments of many types of insomnias, such as sleep terrors, somnambulism, and rapid eye movement (REM) behavior sleep disorders, are discussed.Keywords: diagnosis, treatment, sleep disorders, insomnia
Procedia PDF Downloads 626668 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis
Procedia PDF Downloads 1376667 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging
Authors: Mohammad Esmaeilpour
Abstract:
One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions
Procedia PDF Downloads 4746666 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2516665 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 1466664 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3806663 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs
Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga
Abstract:
Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox
Procedia PDF Downloads 3766662 Embedded Electrochemistry with Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents
Authors: Amer Dawoud, Jesy Motchaalangaram, Arati Biswakarma, Wujan Mio, Karl Wallace
Abstract:
The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWA) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.Keywords: drone-based, remote detection chemical warfare agents, miniaturized, potentiostat
Procedia PDF Downloads 1366661 Evaluation of the Benefit of Anti-Endomysial IgA and Anti-Tissue Transglutaminase IgA Antibodies for the Diagnosis of Coeliac Disease in a University Hospital, 2010-2016
Authors: Recep Keşli, Onur Türkyılmaz, Hayriye Tokay, Kasım Demir
Abstract:
Objective: Coeliac disease (CD) is a primary small intestine disorder caused by high sensitivity to gluten which is present in the crops, characterized by inflammation in the small intestine mucosa. The goal of this study was to determine and to compare the sensitivity and specificity values of anti-endomysial IgA (EMA IgA) (IFA) and anti-tissue transglutaminase IgA (anti-tTG IgA) (ELISA) antibodies in the diagnosis of patients suspected with the CD. Methods: One thousand two hundred seventy three patients, who have applied to gastroenterology and pediatric disease polyclinics of Afyon Kocatepe University ANS Research and Practice Hospital were included into the study between 23.09.2010 and 30.05.2016. Sera samples were investigated by immunofluorescence method for EMA positiveness (Euroimmun, Luebeck, Germany). In order to determine quantitative value of Anti-tTG IgA (EIA) (Orgentec Mainz, Germany) fully automated ELISA device (Alisei, Seac, Firenze, Italy) were used. Results: Out of 1273 patients, 160 were diagnosed with coeliac disease according to ESPGHAN 2012 diagnosis criteria. Out of 160 CD patients, 120 were female, 40 were male. The EMA specificity and sensitivity were calculated as 98% and 80% respectively. Specificity and sensitivity of Anti-tTG IgA were determined as 99% and 96% respectively. Conclusion: The specificity of EMA for CD was excellent because all EMA-positive patients (n = 144) were diagnosed with CD. The presence of human anti-tTG IgA was found as a reliable marker for diagnosis and follow-up the CD. Diagnosis of CD should be established on both the clinical and serologic profiles together.Keywords: anti-endomysial antibody, anti-tTG IgA, coeliac disease, immunofluorescence assay (IFA)
Procedia PDF Downloads 2546660 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 2396659 Metaphorical Perceptions of Middle School Students regarding Computer Games
Authors: Ismail Celik, Ismail Sahin, Fetah Eren
Abstract:
The computer, among the most important inventions of the twentieth century, has become an increasingly important component in our everyday lives. Computer games also have become increasingly popular among people day-by-day, owing to their features based on realistic virtual environments, audio and visual features, and the roles they offer players. In the present study, the metaphors students have for computer games are investigated, as well as an effort to fill the gap in the literature. Students were asked to complete the sentence—‘Computer game is like/similar to….because….’— to determine the middle school students’ metaphorical images of the concept for ‘computer game’. The metaphors created by the students were grouped in six categories, based on the source of the metaphor. These categories were ordered as ‘computer game as a means of entertainment’, ‘computer game as a beneficial means’, ‘computer game as a basic need’, ‘computer game as a source of evil’, ‘computer game as a means of withdrawal’, and ‘computer game as a source of addiction’, according to the number of metaphors they included.Keywords: computer game, metaphor, middle school students, virtual environments
Procedia PDF Downloads 5346658 Generation of Quasi-Measurement Data for On-Line Process Data Analysis
Authors: Hyun-Woo Cho
Abstract:
For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.Keywords: data analysis, diagnosis, monitoring, process data, quality control
Procedia PDF Downloads 4816657 Cyber-Med: Practical Detection Methodology of Cyber-Attacks Aimed at Medical Devices Eco-Systems
Authors: Nir Nissim, Erez Shalom, Tomer Lancewiki, Yuval Elovici, Yuval Shahar
Abstract:
Background: A Medical Device (MD) is an instrument, machine, implant, or similar device that includes a component intended for the purpose of the diagnosis, cure, treatment, or prevention of disease in humans or animals. Medical devices play increasingly important roles in health services eco-systems, including: (1) Patient Diagnostics and Monitoring; Medical Treatment and Surgery; and Patient Life Support Devices and Stabilizers. MDs are part of the medical device eco-system and are connected to the network, sending vital information to the internal medical information systems of medical centers that manage this data. Wireless components (e.g. Wi-Fi) are often embedded within medical devices, enabling doctors and technicians to control and configure them remotely. All these functionalities, roles, and uses of MDs make them attractive targets of cyber-attacks launched for many malicious goals; this trend is likely to significantly increase over the next several years, with increased awareness regarding MD vulnerabilities, the enhancement of potential attackers’ skills, and expanded use of medical devices. Significance: We propose to develop and implement Cyber-Med, a unique collaborative project of Ben-Gurion University of the Negev and the Clalit Health Services Health Maintenance Organization. Cyber-Med focuses on the development of a comprehensive detection framework that relies on a critical attack repository that we aim to create. Cyber-Med will allow researchers and companies to better understand the vulnerabilities and attacks associated with medical devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The Cyber-Med detection framework will consist of two independent, but complementary detection approaches: one for known attacks, and the other for unknown attacks. These modules incorporate novel ideas and algorithms inspired by our team's domains of expertise, including cyber security, biomedical informatics, and advanced machine learning, and temporal data mining techniques. The establishment and maintenance of Cyber-Med’s up-to-date attack repository will strengthen the capabilities of Cyber-Med’s detection framework. Major Findings: Based on our initial survey, we have already found more than 15 types of vulnerabilities and possible attacks aimed at MDs and their eco-system. Many of these attacks target individual patients who use devices such pacemakers and insulin pumps. In addition, such attacks are also aimed at MDs that are widely used by medical centers such as MRIs, CTs, and dialysis engines; the information systems that store patient information; protocols such as DICOM; standards such as HL7; and medical information systems such as PACS. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched against MDs. Very little research has been conducted in order to protect these devices from cyber-attacks, since most of the development and engineering efforts are aimed at the devices’ core medical functionality, the contribution to patients’ healthcare, and the business aspects associated with the medical device.Keywords: medical device, cyber security, attack, detection, machine learning
Procedia PDF Downloads 3566656 Tank Barrel Surface Damage Detection Algorithm
Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský
Abstract:
The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank
Procedia PDF Downloads 1376655 Flicker Detection with Motion Tolerance for Embedded Camera
Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan
Abstract:
CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.Keywords: illumination flicker, embedded camera, rolling shutter, detection
Procedia PDF Downloads 4206654 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction
Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman
Abstract:
Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.Keywords: computer based instruction, teacher candidate, attitude, technology based instruction, information and communication technologies
Procedia PDF Downloads 2956653 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 787