Search results for: chiral magnetic structures
4955 Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model.Keywords: diluted magnetic semiconductors, k.p method, effective masses, curie temperature, strain
Procedia PDF Downloads 974954 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine
Authors: B. Ladghem Chikouche
Abstract:
The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.Keywords: exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability
Procedia PDF Downloads 3284953 Temporal Characteristics of Human Perception to Significant Variation of Block Structures
Authors: Kuo-Cheng Liu
Abstract:
In the latest research efforts, the structures of the image in the spatial domain have been successfully analyzed and proved to deduce the visual masking for accurately estimating the visibility thresholds of the image. If the structural properties of the video sequence in the temporal domain are taken into account to estimate the temporal masking, the improvement and enhancement of the as-sessing spatio-temporal visibility thresholds are reasonably expected. In this paper, the temporal characteristics of human perception to the change in block structures on the time axis are analyzed. The temporal characteristics of human perception are represented in terms of the significant variation in block structures for the analysis of human visual system (HVS). Herein, the block structure in each frame is computed by combined the pattern masking and the contrast masking simultaneously. The contrast masking always overestimates the visibility thresholds of edge regions and underestimates that of texture regions, while the pattern masking is weak on a uniform background and is strong on the complex background with spatial patterns. Under considering the significant variation of block structures between successive frames, we extend the block structures of images in the spatial domain to that of video sequences in the temporal domain to analyze the relation between the inter-frame variation of structures and the temporal masking. Meanwhile, the subjective viewing test and the fair rating process are designed to evaluate the consistency of the temporal characteristics with the HVS under a specified viewing condition.Keywords: temporal characteristic, block structure, pattern masking, contrast masking
Procedia PDF Downloads 4154952 An Extraction of Cancer Region from MR Images Using Fuzzy Clustering Means and Morphological Operations
Authors: Ramandeep Kaur, Gurjit Singh Bhathal
Abstract:
Cancer diagnosis is very difficult task. Magnetic resonance imaging (MRI) scan is used to produce image of any part of the body and provides an efficient way for diagnosis of cancer or tumor. In existing method, fuzzy clustering mean (FCM) is used for the diagnosis of the tumor. In the proposed method FCM is used to diagnose the cancer of the foot. FCM finds the centroids of the clusters of the foot cancer obtained from MRI images. FCM thresholding result shows the extract region of the cancer. Morphological operations are applied to get extracted region of cancer.Keywords: magnetic resonance imaging (MRI), fuzzy C mean clustering, segmentation, morphological operations
Procedia PDF Downloads 4014951 Environmental Impacts on the British Era Structures of Faisalabad-a Detailed Study of the Clock Tower of Faisalabad
Authors: Bazla Manzoor, Aqsa Yasin
Abstract:
Pakistan is the country which is progressing by leaps and bounds through agricultural and industrial growth. The main area, which presents the largest income rate through industrial activities, is Faisalabad from the Province of Punjab. Faisalabad’s main occupations include agriculture and industry. As these sectors i.e. agriculture and industry is developing day by day, they are earning much income for the country and generating thousands of job vacancies. On one hand the city, i.e. Faisalabad is on the way of development through industrial growth, while on the other hand this industrial growth is producing a bad impact on the environment. In return, that damaged environment is affecting badly on the people and built environment. This research is chiefly based on one of the above-mentioned factors i.e. adverse environmental impacts on the built structures. Faisalabad is an old city, therefore; it is having many old structures especially from British Era. Many of those structures are still surviving and are functioning as the government, private and public buildings. However, these structures are getting in a poor condition with the passage of time due to bad maintenance and adverse environmental impacts. Bad maintenance is a factor, which can be controlled by financial assistance and management. The factor needs to be seriously considered is the other one i.e. adverse environmental impacts on British Era structures of the city because this factor requires controlled and refined human activities and actions. For this reason, a research was required to conserve the British Era structures of Faisalabad so that these structures can function well. The other reason to conserve them is that these structures are historically important and are the heritage of the city. For doing this research, literature has been reviewed which was present in the libraries of the city. Department of Environment, Town Municipal Administration, Faisalabad Development Authority and Lyallpur Heritage Foundation were visited to collect the existing data available. Various British Era structures were also visited to note down the environmental impacts on them. From all the structures “Clock Tower,” was deeply studied as it is one of the oldest and most important heritage structures of the city because the earlier settlements of the city were planned based on its location by The British Government. The architectural and environmental analyses were done for The Clock Tower. This research study found the deterioration factors of the tower according to which suggestions have been made.Keywords: lyallpur, heritage, architecture, environment
Procedia PDF Downloads 3034950 Study the Dynamic Behavior of Irregular Buildings by the Analysis Method Accelerogram
Authors: Beciri Mohamed Walid
Abstract:
Some architectural conditions required some shapes often lead to an irregular distribution of masses, rigidities and resistances. The main object of the present study consists in estimating the influence of the irregularity both in plan and in elevation which presenting some structures on the dynamic characteristics and his influence on the behavior of this structures. To do this, it is necessary to make apply both dynamic methods proposed by the RPA99 (spectral modal method and method of analysis by accelerogram) on certain similar prototypes and to analyze the parameters measuring the answer of these structures and to proceed to a comparison of the results.Keywords: structure, irregular, code, seismic, method, force, period
Procedia PDF Downloads 3114949 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Authors: Ghada Badr, Arwa Alturki
Abstract:
The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining
Procedia PDF Downloads 4594948 Anti-Site Disorder Effects on the Magnetic Properties of Sm₂NiMnO₆ Thin Films
Authors: Geetanjali Singh, R. J. Choudhary, Anjana Dogra
Abstract:
Here we report the effects of anti-site disorder, present in the sample, on the magnetic properties of Sm₂NiMnO₆ (SNMO) thin films. To our best knowledge, there are no studies available on the thin films of SNMO. Thin films were grown using pulsed laser deposition technique on SrTiO₃ (STO) substrate under oxygen pressure of 800 mTorr. X-ray diffraction (XRD) profiles show that the film grown is epitaxial. Field cooled (FC) and zero field cooled (ZFC) magnetization curve increase as we decrease the temperature till ~135K. A broad dip was observed in both the curves below this temperature which is more dominating in ZFC curve. An additional sharp cusplike shape was observed at low temperature (~20 K) which is due to the re-entrant spin-glass like properties present in the sample. Super-exchange interaction between Ni²⁺-O-Mn⁴⁺ is attributed to the FM ordering in these samples. The spin-glass feature is due to anti-site disorder within the homogeneous sample which was stated to be due to the mixed valence states Ni³⁺ and Mn³⁺ present in the sample. Anti-site disorder was found to play very crucial role in different magnetic phases of the sample.Keywords: double perovskite, pulsed laser deposition, spin-glass, magnetization
Procedia PDF Downloads 2624947 Why Do We Need Hierachical Linear Models?
Authors: Mustafa Aydın, Ali Murat Sunbul
Abstract:
Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure
Procedia PDF Downloads 6524946 Implementing 3D Printed Structures as the Newest Textile Form
Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın
Abstract:
From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard.Keywords: 3D printing technology, FDM, SLS, textile structure
Procedia PDF Downloads 3394945 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4284944 Studying Frame-Resistant Steel Structures under Near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component
Procedia PDF Downloads 3174943 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 6414942 Analysis and Design of Irregular Large Cantilever Structure of Statue
Authors: Pan Rui, Ma Jun, Zhao Caiqi, Wang Guangda
Abstract:
With the development of the tourism and religion,more and more large statue structures are adopted to build all over the world.For instance,the GuanYin statue with three plane reaches 108 meters high in HaiNan province in China.These statue structures belong to typical high-rise Building. However,the geometry sculpt of statues are complicated .The irregular shape makes these structures more complicated in force analysis than those normal standard tall buildings.In this paper,the Liu Bang Statue which is located at XuZhou in China.Keywords: large statue structure, special-shaped steel, GuanYin statue, China
Procedia PDF Downloads 3954941 Risk Assessment of Roof Structures in Concepcion, Tarlac in the Event of an Ash Fall
Authors: Jerome Michael J. Sadullo, Jamaica Lois A. Torres, Trisha Muriel T. Valino
Abstract:
In the Philippines, Central Luzon is one of the regions at high risk in terms of volcanic eruption. In fact, last June 15, 1991, which were the Mount Pinatubo has erupted, the most affected provinces were Zambales, Olangapo, Pampanga, Tarlac, Bataan, Bulacan and Nueva Ecija. During the Mount Pinatubo eruption, Castillejos, Zambales, has recorded the most significant damage to both commercial and residential structures. In this study, the researchers aim to determine and analyze the various impacts of ashfall on roof structures in Concepcion, Tarlac, during the event of a volcanic eruption. In able for the researcher to determine the sample size of the study, they have utilized Cochran's sample size formula. With the computed sample size, the researchers have gathered data through the distribution of survey forms, utilizing public records, and picture documentation of different roof structures in Concepcion, Tarlac. With the data collected, Chi-squared goodness of fit was done by the researcher in order to compare the data collected from the observed N (Concepcion, Tarlac) and expected N (Castillejos, Zambales). The results showed that when it comes to the roof constructions material used in Concepcion, Tarlac and Castillejos, Zambales. Structures in Concepcion, Tarlac were most likely to suffer worse when another eruption happens compared to the structures in Castillejos, Zambales. Yet, considering the current structural statuses of structure in Concepcion Tarlac and its location from Mount Pinatubo, they are less likely to experience ashfall.Keywords: risk assessment, Concepcion, Tarlac, Volcano Pinatubo, roof structures, ashfall
Procedia PDF Downloads 1104940 Differentiation of Drug Stereoisomers by Their Stereostructure-Selective Membrane Interactions as One of Pharmacological Mechanisms
Authors: Maki Mizogami, Hironori Tsuchiya, Yoshiroh Hayabuchi, Kenji Shigemi
Abstract:
Since drugs exhibit significant structure-dependent differences in activity and toxicity, their differentiation based on the mechanism of action should have implications for comparative drug efficacy and safety. We aimed to differentiate drug stereoisomers by their stereostructure-selective membrane interactions underlying pharmacological and toxicological effects. Biomimetic lipid bilayer membranes were prepared with phospholipids and sterols (either cholesterol or epicholesterol) to mimic the lipid compositions of neuronal and cardiomyocyte membranes and to provide these membranes with the chirality. The membrane preparations were treated with different classes of stereoisomers at clinically- and pharmacologically-relevant concentrations (25-200 μM), followed by measuring fluorescence polarization to determine the membrane interactivity of drugs to change the physicochemical property of membranes. All the tested drugs acted on lipid bilayers to increase or decrease the membrane fluidity. Drug stereoisomers could not be differentiated when interacting with the membranes consisting of phospholipids alone. However, they stereostructure-selectively interacted with neuro-mimetic and cardio-mimetic membranes containing 40 mol% cholesterol ((3β)-cholest-5-en-3-ol) to show the relative potencies being local anesthetic R(+)-bupivacaine > rac-bupivacaine > S(‒)-bupivacaine, α2-adrenergic agonistic D-medetomidine > rac-medetomidine > L-medetomidine, β-adrenergic antagonistic R(+)-propranolol > rac-propranolol > S(–)-propranolol, NMDA receptor antagonistic S(+)-ketamine > rac-ketamine, analgesic monoterpenoid (+)-menthol > (‒)-menthol, non-steroidal anti-inflammatory S(+)-ibuprofen > rac-ibuprofen > R(‒)-ibuprofen, and bioactive flavonoid (+)-epicatechin > (‒)-epicatechin. All of the order of membrane interactivity were correlated to those of beneficial and adverse effects of the tested stereoisomers. In contrast, the membranes prepared with epicholesterol ((3α)-chotest-5-en-3-ol), an epimeric form of cholesterol, reversed the rank order of membrane interactivity to be S(‒)-enantiomeric > racemic > R(+)-enantiomeric bupivacaine, L-enantiomeric > racemic > D-enantiomeric medetomidine, S(–)-enantiomeric > racemic > R(+)-enantiomeric propranolol, racemic > S(+)-enantiomeric ketamine, (‒)-enantiomeric > (+)-enantiomeric menthol, R(‒)-enantiomeric > racemic > S(+)-enantiomeric ibuprofen, and (‒)-enantiomeric > (+)-enantiomeric epicatechin. The opposite configuration allows drug molecules to interact with chiral sterol membranes enantiomer-selectively. From the comparative results, it is speculated that a 3β-hydroxyl group in cholesterol is responsible for the enantioselective interactions of drugs. In conclusion, the differentiation of drug stereoisomers by their stereostructure-selective membrane interactions would be useful for designing and predicting drugs with higher activity and/or lower toxicity.Keywords: chiral membrane, differentiation, drug stereoisomer, enantioselective membrane interaction
Procedia PDF Downloads 2244939 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level
Procedia PDF Downloads 4654938 Altering Surface Properties of Magnetic Nanoparticles with Single-Step Surface Modification with Various Surface Active Agents
Authors: Krupali Mehta, Sandip Bhatt, Umesh Trivedi, Bhavesh Bharatiya, Mukesh Ranjan, Atindra D. Shukla
Abstract:
Owing to the dominating surface forces and large-scale surface interactions, the nano-scale particles face difficulties in getting suspended in various media. Magnetic nanoparticles of iron oxide offer a great deal of promise due to their ease of preparation, reasonable magnetic properties, low cost and environmental compatibility. We intend to modify the surface of magnetic Fe₂O₃ nanoparticles with selected surface modifying agents using simple and effective single-step chemical reactions in order to enhance dispersibility of magnetic nanoparticles in non-polar media. Magnetic particles were prepared by hydrolysis of Fe²⁺/Fe³⁺ chlorides and their subsequent oxidation in aqueous medium. The dried particles were then treated with Octadecyl quaternary ammonium silane (Terrasil™), stearic acid and gallic acid ester of stearyl alcohol in ethanol separately to yield S-2 to S-4 respectively. The untreated Fe₂O₃ was designated as S-1. The surface modified nanoparticles were then analysed with Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Gravimetric Analysis (TGA) and Scanning Electron Microscopy and Energy dispersive X-Ray analysis (SEM-EDAX). Characterization reveals the particle size averaging 20-50 nm with and without modification. However, the crystallite size in all cases remained ~7.0 nm with the diffractogram matching to Fe₂O₃ crystal structure. FT-IR suggested the presence of surfactants on nanoparticles’ surface, also confirmed by SEM-EDAX where mapping of elements proved their presence. TGA indicated the weight losses in S-2 to S-4 at 300°C onwards suggesting the presence of organic moiety. Hydrophobic character of modified surfaces was confirmed with contact angle analysis, all modified nanoparticles showed super hydrophobic behaviour with average contact angles ~129° for S-2, ~139.5° for S-3 and ~151° for S-4. This indicated that surface modified particles are super hydrophobic and they are easily dispersible in non-polar media. These modified particles could be ideal candidates to be suspended in oil-based fluids, polymer matrices, etc. We are pursuing elaborate suspension/sedimentation studies of these particles in various oils to establish this conjecture.Keywords: iron nanoparticles, modification, hydrophobic, dispersion
Procedia PDF Downloads 1414937 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.Keywords: Cu-doped CeO₂, DFT, Wien2k, properties
Procedia PDF Downloads 2564936 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators
Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho
Abstract:
Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.Keywords: direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines
Procedia PDF Downloads 1754935 Development of a Model for the Redesign of Plant Structures
Authors: L. Richter, J. Lübkemann, P. Nyhuis
Abstract:
In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.Keywords: change driven factory redesign, factory planning, plant structure, flexibility
Procedia PDF Downloads 2714934 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames
Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh
Abstract:
Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.Keywords: ACC, SCBF frames, spatial structures, CFST frames
Procedia PDF Downloads 1984933 The Distributed Pattern of the Neurovascular Structures under Clavicle to Minimize Structural Injury in Clinical Field: Anatomical Study
Authors: Anna Jeon, Seung-Ho Han, Je-Hun Lee
Abstract:
The aim of this study was to determine the location and distribution pattern of neurovascular structures superior and inferior to the clavicle by detailed dissection. Fifteen adult non-embalmed cadavers with a mean age of 71.5 years were studied. For measurements, the most prominent point of the sternal end of the clavicle (SEC) on anterior view and the most prominent point of the acromial end of the clavicle (AEC) were identified before dissection. A line connecting the SEC and AEC was used as a reference line. The surrounding neurovascular structures were investigated. The supraclavicular nerve was densely distributed at 71.73% on the reference line. Branches of the thoracoacromial artery were located at 76.92%. Branches of subclavian vein were evenly distributed at all sections. The subclavian vein and artery and brachial plexus were located from 31.3% to 57.5%. That area needs caution because major neurovascular structures run underneath the clavicle.Keywords: clavicle, ORIF, neurovascular structure, anatomical study
Procedia PDF Downloads 1674932 Cadaveric Study of Lung Anatomy: A Surgical Overview
Authors: Arthi Ganapathy, Rati Tandon, Saroj Kaler
Abstract:
Introduction: A thorough knowledge of variations in lung anatomy is of prime significance during surgical procedures like lobectomy, pneumonectomy, and segmentectomy of lungs. The arrangement of structures in the lung hilum act as a guide in performing such procedures. The normal pattern of arrangement of hilar structures in the right lung is eparterial bronchus, pulmonary artery, hyparterial bronchus and pulmonary veins from above downwards. In the left lung, it is pulmonary artery, principal bronchus and pulmonary vein from above downwards. The arrangement of hilar structures from anterior to posterior in both the lungs is pulmonary vein, pulmonary artery, and principal bronchus. The bronchial arteries are very small and usually the posterior most structures in the hilum of lungs. Aim: The present study aims at reporting the variations in hilar anatomy (arrangement and number) of lungs. Methodology: 75 adult formalin fixed cadaveric lungs from the department of Anatomy AIIMS New Delhi were observed for variations in the lobar anatomy. Arrangement of pulmonary hilar structures was meticulously observed, and any deviation in the pattern of presentation was recorded. Results: Among the 75 adult lung specimens observed 36 specimens were of right lung and the rest of left lung. Seven right lung specimens showed only 2 lobes with an oblique fissure dividing them and one left lung showed 3 lobes. The normal pattern of arrangement of hilar structures was seen in 22 right lungs and 23 left lungs. Rest of the lung specimens (14 right and 16 left) showed a varied pattern of arrangement of hilar structures. Some of them showed alterations in the sequence of arrangement of pulmonary artery, pulmonary veins, bronchus, and others in the number of these structures. Conclusion: Alterations in the pattern of arrangement of structures in the lung hilum are quite frequent. A compromise in knowledge of such variations will result in inadvertent complications like intraoperative bleeding during surgical procedures.Keywords: fissures, hilum, lobes, pulmonary
Procedia PDF Downloads 2254931 Design of Torque Actuator in Hybrid Multi-DOF System with Taking into Account Magnetic Saturation
Authors: Hyun-Seok Hong, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee
Abstract:
In this paper, proposes to replace the three-phase SPM for tilting by a single-phase torque actuator of the hybrid multi-DOF system. If a three-phase motor for tilting SPM as acting as instantaneous, low electricity use efficiency, controllability is bad disadvantages. It uses a single-phase torque actuator has a high electrical efficiency compared, good controllability. Thus this will have a great influence on the development and practical use of the system. This study designed a single phase torque actuator in consideration of the magnetic saturation. And compared the SPM and FEM analysis and validation through testing of the production model.Keywords: hybrid multi-DOF system, SPM, torque actuator, UAV, drone
Procedia PDF Downloads 6134930 Magnetic Bio-Nano-Fluids for Hyperthermia
Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak
Abstract:
Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron
Procedia PDF Downloads 4164929 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage
Procedia PDF Downloads 2584928 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite
Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri
Abstract:
Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity
Procedia PDF Downloads 2594927 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures
Authors: Saeed Asiri, Yousuf Z. AL-Zahrani
Abstract:
A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method
Procedia PDF Downloads 2904926 Comparison of Compression Properties of Stretchable Knitted Fabrics and Bi-Stretch Woven Fabrics for Compression Garments
Authors: Muhammad Maqsood, Yasir Nawab, Syed Talha Ali Hamdani
Abstract:
Stretchable fabrics have diverse applications ranging from casual apparel to performance sportswear and compression therapy. Compression therapy is the universally accepted treatment for the management of hypertrophic scarring after severe burns. Mostly stretchable knitted fabrics are used in compression therapy but in the recent past, some studies have also been found on bi-stretch woven fabrics being used as compression garments as they also have been found quite effective in the treatment of oedema. Therefore, the objective of the present study is to compare the compression properties of stretchable knitted and bi-stretch woven fabrics for compression garments. For this purpose four woven structures and four knitted structures were produced having the same areal density and their compression, comfort and mechanical properties were compared before and after 5, 10 and 15 washes. Four knitted structures used were single jersey, single locaste, plain pique and the honeycomb, whereas four woven structures produced were 1/1 plain, 2/1 twill, 3/1 twill and 4/1 twill. The compression properties of the produced samples were tested by using kikuhime pressure sensor and it was found that bi-stretch woven fabrics possessed better compression properties before and after washes and retain their durability after repeated use, whereas knitted stretchable fabrics lost their compression ability after repeated use and the required sub garment pressure of the knitted structures after 15 washes was almost half to that of woven bi-stretch fabrics.Keywords: compression garments, knitted structures, medical textiles, woven bi-stretch
Procedia PDF Downloads 412