Search results for: bass model
16235 A Comparative Analysis of E-Government Quality Models
Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri
Abstract:
Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.Keywords: e-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126
Procedia PDF Downloads 56016234 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 7516233 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje
Authors: Ozden Saygili, Eser Cakti
Abstract:
The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry
Procedia PDF Downloads 42516232 Tolerating Input Faults in Asynchronous Sequential Machines
Authors: Jung-Min Yang
Abstract:
A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching
Procedia PDF Downloads 42316231 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model
Authors: Gürkan Şakar, Fevzi Çakmak Bolat
Abstract:
In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model
Procedia PDF Downloads 41716230 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 44416229 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification
Procedia PDF Downloads 30916228 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 34516227 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables
Procedia PDF Downloads 33316226 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.Keywords: watershed simulation, WetSpa, stream flow, flood prediction
Procedia PDF Downloads 24416225 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 4616224 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach
Authors: Franziska Mais, Till Gramberg
Abstract:
The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 8116223 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies
Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang
Abstract:
This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory
Procedia PDF Downloads 27916222 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 39316221 Motor Controller Implementation Using Model Based Design
Authors: Cau Tran, Tu Nguyen, Tien Pham
Abstract:
Model-based design (MBD) is a mathematical and visual technique for addressing design issues in the fields of communications, signal processing, and complicated control systems. It is utilized in several automotive, aerospace, industrial, and motion control applications. Virtual models are at the center of the software development process with model based design. A method used in the creation of embedded software is model-based design. In this study, the LAT motor is modeled in a simulation environment, and the LAT motor control is designed with a cascade structure, a speed and current control loop, and a controller that is used in the next part. A PID structure serves as this controller. Based on techniques and motor parameters that match the design goals, the PID controller is created for the model using traditional design principles. The MBD approach will be used to build embedded software for motor control. The paper will be divided into three distinct sections. The first section will introduce the design process and the benefits and drawbacks of the MBD technique. The design of control software for LAT motors will be the main topic of the next section. The experiment's results are the subject of the last section.Keywords: model based design, limited angle torque, intellectual property core, hardware description language, controller area network, user datagram protocol
Procedia PDF Downloads 9416220 Gender Based of Sustainable Food Self-Resilience for Village Using Dynamic System Model
Authors: Kholil, Laksanto Utomo
Abstract:
The food needs of the Indonesian people will continue increase year to year due to the increase of population growth. For ensuring food securityand and resilience, the government has developed a program food self-resilience village since 2006. Food resilience is a complex system, consisting of subsystem availability, distribution and consumption of the sufficiency of food consumed both in quantity and quality. Low access, and limited assets to food sources is the dominant factor vulnerable of food. Women have a major role in supporting the productive activities of the family to meet food sufficiency and resilience. The purpose of this paper is to discuss the model of food self-resilience village wich gender responsive by using a dynamic system model. Model will be developed into 3 level: family, vilage, and regency in accordance with the concept of village food resilience model wich has been developed by ministry of agriculture. Model development based on the results of experts discussion and field study. By some scenarios and simulation models we will able to develop appropriate policy strategies for family food resilience. The result of study show that food resilience was influenced by many factors: goverment policies, technology, human resource, and in the same time it will be a feed back for goverment policies and number of poor family.Keywords: food availability, food sufficiency, gender, model dynamic, law enfrocement
Procedia PDF Downloads 53416219 A Model of Knowledge Management Culture Change
Authors: Reza Davoodi, Hamid Abbasi, Heidar Norouzi, Gholamabbas Alipourian
Abstract:
A dynamic model shaping a process of knowledge management (KM) culture change is suggested. It is aimed at providing effective KM of employees for obtaining desired results in an organization. The essential requirements for obtaining KM culture change are determined. The proposed model realizes these requirements. Dynamics of the model are expressed by a change of its parameters. It is adjusted to the dynamic process of KM culture change. Building the model includes elaboration and integration of interconnected components. The “Result” is a central component of the model. This component determines a desired organizational goal and possible directions of its attainment. The “Confront” component engenders constructive confrontation in an organization. For this reason, the employees are prompted toward KM culture change with the purpose of attaining the desired result. The “Assess” component realizes complex assessments of employee proposals by management and peers. The proposals are directed towards attaining the desired result in an organization. The “Reward” component sets the order of assigning rewards to employees based on the assessments of their proposals.Keywords: knowledge management, organizational culture change, employee, result
Procedia PDF Downloads 40716218 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17216217 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments
Authors: Felix Böck
Abstract:
Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization
Procedia PDF Downloads 1616216 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 29716215 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings
Authors: Nadish Anand, Richard D. Gould
Abstract:
A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance
Procedia PDF Downloads 26616214 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door
Authors: Zainab Fadhil Al Toki, Nader Ghareeb
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 5116213 Value Co-Creation Model for Relationships Management
Authors: Kolesnik Nadezda A.
Abstract:
The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.Keywords: inter-organizational networks, value co-creation, model, B2B market
Procedia PDF Downloads 45616212 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models
Authors: Phanida Phukoetphim, Asaad Y. Shamseldin
Abstract:
In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics
Procedia PDF Downloads 33916211 A Data-Driven Agent Based Model for the Italian Economy
Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio
Abstract:
We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data
Procedia PDF Downloads 6916210 Active Power Control of PEM Fuel Cell System Power Generation Using Adaptive Neuro-Fuzzy Controller
Authors: Khaled Mammar
Abstract:
This paper presents an application of adaptive neuro-fuzzy controller for PEM fuel cell system. The model proposed for control include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore, a Fuzzy Logic (FLC) and adaptive neuro-fuzzy controllers are used to control the active power of PEM fuel cell system. The controllers modify the hydrogen flow feedback from the terminal load. The validity of the controller is verified when the fuel cell system model is used in conjunction with the ANFIS controller to predict the response of the active power. Simulation results confirmed the high-performance capability of the neuo-fuzzy to control power generation.Keywords: fuel cell, PEMFC, modeling, simulation, Fuzzy Logic Controller, FLC, adaptive neuro-fuzzy controller, ANFIS
Procedia PDF Downloads 45916209 Numerical Investigation of Wastewater Rheological Characteristics on Flow Field Inside a Sewage Network
Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian
Abstract:
The wastewater flow field inside a sewage network including pipe and manhole was investigated using a Computational Fluid Dynamics (CFD) model. The numerical model is developed by incorporating a rheological model to calculate the viscosity of wastewater fluid by means of open source toolbox OpenFOAM. The rheological properties of prepared wastewater fluid suspensions are first measured using a BrookField LVDVII Pro+ viscometer with an enhanced UL adapter and then correlated the suitable rheological viscosity model values from the measured rheological properties. The results show the significant effects of rheological characteristics of wastewater fluid on the flow domain of sewer system. Results were compared and discussed with the commonly used Newtonian model to evaluate the differences for velocity profile, pressure and shear stress. Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network
Procedia PDF Downloads 13016208 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI
Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil
Abstract:
The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency
Procedia PDF Downloads 40916207 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes
Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel
Abstract:
In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes
Procedia PDF Downloads 22016206 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors
Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri
Abstract:
Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods
Procedia PDF Downloads 135