Search results for: automatic calibration framework
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6144

Search results for: automatic calibration framework

5574 The Role of Knowledge Management in Global Software Engineering

Authors: Samina Khalid, Tehmina Khalil, Smeea Arshad

Abstract:

Knowledge management is essential ingredient of successful coordination in globally distributed software engineering. Various frameworks, KMSs, and tools have been proposed to foster coordination and communication between virtual teams but practical implementation of these solutions has not been found. Organizations have to face challenges to implement knowledge management system. For this purpose at first, a literature review is arranged to investigate about challenges that restrict organizations to implement KMS and then by taking in account these challenges a problem of need of integrated solution in the form of standardized KMS that can easily store tacit and explicit knowledge, has traced down to facilitate coordination and collaboration among virtual teams. Literature review has been already shown that knowledge is a complex perception with profound meanings, and one of the most important resources that contributes to the competitive advantage of an organization. In order to meet the different challenges caused by not properly managing knowledge related to projects among virtual teams in GSE, we suggest making use of the cloud computing model. In this research a distributed architecture to support KM storage is proposed called conceptual framework of KM as a service in cloud. Framework presented is enhanced and conceptual framework of KM is embedded into that framework to store projects related knowledge for future use.

Keywords: management, Globsl software development, global software engineering

Procedia PDF Downloads 512
5573 Understanding the Factors That Enable Logistics Integration in the ‎Port Sector: Evidence from Iranian Seaport Sector

Authors: Ali Alavi, Owen Nguyen, Jiangang Fei, Jafar Sayareh

Abstract:

The main purpose of this research is to propose a conceptual framework to analyze port logistics integration in general and for the Iranian port sector in particular, including consideration of the challenges, outcomes, and opportunities in implementing port logistics integration. First, a literature review of studies on logistics integration in seaports and terminals is conducted. Second, a new conceptual framework for port logistics integration is proposed to incorporate the role of the new variables emerging from the recent developments in the global business environment. The literature review has found the logistics process and operations, information integration, value-added services, and logistics practices, organizational activities, resource sharing and institutional support being influential to logistics integration. The study used survey method to test the proposed conceptual framework. Both online and self-administrative survey have been used to collect data from ‎port official staffs in Iranian seaports and their associations (internal port ‎stakeholders) as well ‎as other experts in various actors. In the study, the questionnaire was first validated using exploratory factor analysis (EFA) and then by confirmatory factor analysis (CFA). The results of the EFA and CFA confirmed the finding from the literature review. Research results and conceptual framework shed the lights on port logistics integration concept and suggest guidelines and procedures improve port logistics integration.

Keywords: maritime logistics, logistics integration, port management, EFA, CFA

Procedia PDF Downloads 152
5572 A Conceptual Framework and a Mathematical Equation for Managing Construction-Material Waste and Cost Overruns

Authors: Saidu Ibrahim, Winston M. W. Shakantu

Abstract:

The problem of construction material waste remains unresolved, as a significant percentage of the materials delivered to some project sites end up as waste which might result in additional project cost. Cost overrun is a problem which affects 90% of the completed projects in the world. The argument on how to eliminate it has been on-going for the past 70 years, but there is neither substantial improvement nor significant solution for mitigating its detrimental effects. Research evidence has proposed various construction cost overruns and material-waste management approaches; nonetheless, these studies failed to give a clear indication on the framework and the equation for managing construction material waste and cost overruns. Hence, this research aims to develop a conceptual framework and a mathematical equation for managing material waste and cost overrun in the construction industry. The paper adopts the desktop methodological approach. This involves comparing the causes of material waste and those of cost overruns from the literature to determine the possible relationship. The review revealed a relationship between material waste and cost overrun that; increase in material waste would result to a corresponding increase in the amount of cost overrun at both the pre-contract and the post contract stages of a project. It was found from the equation that achieving an effective construction material waste management must ensure a “Good Quality-of-Planning, Estimating, and Design Management” and a “Good Quality- of-Construction, Procurement and Site Management”; a decrease in “Design Complexity” which would reduce “Material Waste” and subsequently reduce the amount of cost overrun by 86.74%. The conceptual framework and the mathematical equation developed in this study are recommended to the professionals of the construction industry.

Keywords: conceptual framework, cost overrun, material waste, project stags

Procedia PDF Downloads 284
5571 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection

Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok

Abstract:

The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.

Keywords: RJ45, automatic annotation, object tracking, 3D projection

Procedia PDF Downloads 152
5570 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 228
5569 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 228
5568 Utilizing Public Spaces as a Precursor for Community Social Cohesion

Authors: Oloruntoba Kayode, Mohd Hisyam Rasidi, Ismail Said

Abstract:

This study investigates the influence of public space in developing social cohesion among residents in science cities. The study takes into consideration the need for social cohesion in knowledge-based development and focuses on Cyberjaya Malaysia being a science city that is characterized by public spaces. As such, we adopted validated measuring tools for this study we developed a theoretical framework that links public space utilization with people's social cohesion. A total of 211 survey questions were administered by the residents in the study area on public space utilization and their social cohesion potentials. The research framework was validated to confirm its fit using structural equation modeling (SEM). The findings indicated that the observed public space utilization variables significantly influenced people's social cohesion, while group social ties have a positive influence on their collective minds.

Keywords: public space, social cohesion, knowledge-based development, theoretical framework

Procedia PDF Downloads 26
5567 Maintenance Objective-Based Asset Maintenance Maturity Model

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Peter Chemweno

Abstract:

The fast-changing business and operational environment are forcing organizations to adopt asset performance management strategies, not only to reduce costs but also maintain operational and production policies while addressing demand. To attain optimal asset performance management, a framework that ensures a continuous and systematic approach to analyzing an organization’s current maturity level and expected improvement regarding asset maintenance processes, strategies, technologies, capabilities, and systems is essential. Moreover, this framework while addressing maintenance-intensive organizations should consider the diverse business, operational and technical context (often dynamic) an organization is in and realistically prescribe or relate to the appropriate tools and systems the organization can potentially employ in the respective level, to improve and attain their maturity goals. This paper proposes an asset maintenance maturity model to assess the current capabilities, strength and weaknesses of maintenance processes an organization is using and analyze gaps for improvement via structuring set levels of achievement. At the epicentre of the proposed framework is the utilization of maintenance objective selected by an organization for various maintenance optimization programs. The framework adapts the Capability Maturity Model of assessing the maintenance process maturity levels in the organization.

Keywords: asset maintenance, maturity models, maintenance objectives, optimization

Procedia PDF Downloads 206
5566 The Role of Islam in the Political Thought of Muhammad Abduh

Authors: Mehdi Beyad

Abstract:

Muhammad Abduh stands as a founding thinker of Islamic revivalism and modernism, the political phenomenon which began with him and Jamal al-Din al-Afghani in the 19th century which sought to address the perceived regression of Islamic societies in the face of western colonialism and the onslaught of modernity. The scholarship on Abduh and al-Afghani, and Islamic modernism in general, is vast. This paper, however, provides a critical approach to some of this scholarship and attempts to re-think the epistemic framework of Abduh's political thought and the place of Islam therein. Much of the current work on Abduh falls into the trap of seeing his task as one of "compromising" Islam for the values of European modernity. This paper argues that for Abduh, Islam was not just a compartmentalised theological framework: it was at the nexus of societal emancipation, intellectual and cultural rejuvenation, and political progress. Far from “modernising” and diluting Islam to the extent that it became irrelevant in the face of rationality as defined by European modernity, Islam remained central to Abduh’s political framework.

Keywords: Islamic political thought, Islamic revivalism, modernism, Muhammad Abduh, epistemology

Procedia PDF Downloads 1123
5565 Quantifying Automation in the Architectural Design Process via a Framework Based on Task Breakdown Systems and Recursive Analysis: An Exploratory Study

Authors: D. M. Samartsev, A. G. Copping

Abstract:

As with all industries, architects are using increasing amounts of automation within practice, with approaches such as generative design and use of AI becoming more commonplace. However, the discourse on the rate at which the architectural design process is being automated is often personal and lacking in objective figures and measurements. This results in confusion between people and barriers to effective discourse on the subject, in turn limiting the ability of architects, policy makers, and members of the public in making informed decisions in the area of design automation. This paper proposes the use of a framework to quantify the progress of automation within the design process. The use of a reductionist analysis of the design process allows it to be quantified in a manner that enables direct comparison across different times, as well as locations and projects. The methodology is informed by the design of this framework – taking on the aspects of a systematic review but compressed in time to allow for an initial set of data to verify the validity of the framework. The use of such a framework of quantification enables various practical uses such as predicting the future of the architectural industry with regards to which tasks will be automated, as well as making more informed decisions on the subject of automation on multiple levels ranging from individual decisions to policy making from governing bodies such as the RIBA. This is achieved by analyzing the design process as a generic task that needs to be performed, then using principles of work breakdown systems to split the task of designing an entire building into smaller tasks, which can then be recursively split further as required. Each task is then assigned a series of milestones that allow for the objective analysis of its automation progress. By combining these two approaches it is possible to create a data structure that describes how much various parts of the architectural design process are automated. The data gathered in the paper serves the dual purposes of providing the framework with validation, as well as giving insights into the current situation of automation within the architectural design process. The framework can be interrogated in many ways and preliminary analysis shows that almost 40% of the architectural design process has been automated in some practical fashion at the time of writing, with the rate at which progress is made slowly increasing over the years, with the majority of tasks in the design process reaching a new milestone in automation in less than 6 years. Additionally, a further 15% of the design process is currently being automated in some way, with various products in development but not yet released to the industry. Lastly, various limitations of the framework are examined in this paper as well as further areas of study.

Keywords: analysis, architecture, automation, design process, technology

Procedia PDF Downloads 89
5564 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity

Authors: Kavita Bodke

Abstract:

Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.

Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification

Procedia PDF Downloads 23
5563 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow

Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan

Abstract:

The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.

Keywords: QGP, magnetohydrodynamics, hadrons, conversation

Procedia PDF Downloads 47
5562 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System

Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich

Abstract:

The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.

Keywords: automated vehicle, driver behavior, human factors, human-machine system

Procedia PDF Downloads 129
5561 A Systems-Level Approach towards Transition to Electrical Vehicles

Authors: Mayuri Roy Choudhury, Deepti Paul

Abstract:

Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.

Keywords: transition, electrical vehicles, systems-level, algorithms

Procedia PDF Downloads 213
5560 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 497
5559 HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers

Authors: P. S. Seboletswe, Z. Mkhize, L. M. Katata-Seru

Abstract:

Protorhus longifolia is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of Protorhus longifolia methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the Rf = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in Protorhus longifolia leaves and also identify other biomarkers.

Keywords: biomarkers, fingerprint profiling, gallic acid, HPTLC, Protorhus longifolia

Procedia PDF Downloads 130
5558 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 313
5557 Welfare beyond the State: a Conceptual Discursive of an ‘Ihsani’ Societal-Based Welfare

Authors: Maszlee Malik

Abstract:

If the contemporary notion of welfare arises from the horizontal material needs and to be structured by the vertical framework of the state, Islamic societal-based welfare is to be shaped by moral based and faith inspired ihsan (benevolence) culture in producing the ‘Ihsani’ version of the enhancement of the political participation, democratic culture, good governance and self-realisation, which eventually culminating towards the bigger picture of ‘development’. This paper will analytically investigate on how the over-arching principle of ‘ihsan’ could be an essential tool in harmonizing the social-based welfare instrument as another conceptual framework to formulate a conceptual approach towards development and poverty elevation beyond the state. Essentially, this research will employ the inductive method of exploration on Islamic epistemological sources and historical evidence, to formulate the discursive concept of non-state societal-based welfare based on the ‘ihsani’ framework.

Keywords: benevolent society, development, Hisbah, HomoIslamicus, Ihsani, islamic epistemology, state, social capital, societal-based welfare, zakat

Procedia PDF Downloads 685
5556 The Discriminate Analysis and Relevant Model for Mapping Export Potential

Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban

Abstract:

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

Keywords: export strategy, modeling export, calibration, export promotion

Procedia PDF Downloads 490
5555 Evaluation of the Architect-Friendliness of LCA-Based Environmental Impact Assessment Tools

Authors: Elke Meex, Elke Knapen, Griet Verbeeck

Abstract:

The focus of sustainable building is gradually shifting from energy efficiency towards the more global environmental impact of building design during all life-cycle stages. In this context, many tools have been developed that use a LCA-approach to assess the environmental impact on a whole building level. Since the building design strongly influences the final environmental performance and the architect plays a key role in the design process, it is important that these tools are adapted to his work method and support the decision making from the early design phase on. Therefore, a comparative evaluation of the degree of architect-friendliness of some LCA tools on building level is made, based on an evaluation framework specifically developed for the architect’s viewpoint. In order to allow comparison of the results, a reference building has been designed, documented for different design phases and entered in all software tools. The evaluation according to the framework shows that the existing tools are not very architect-friendly. Suggestions for improvement are formulated.

Keywords: architect-friendliness, design supportive value, evaluation framework, tool comparison

Procedia PDF Downloads 532
5554 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 100
5553 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 118
5552 A Novel Multi-Attribute Green Decision Making Model for Environmental Supply Chain Sustainability

Authors: Amirhossein Mahlouji

Abstract:

In current business market, the concept of integrating environmental sustainability into long-term as well as routine operations is becoming a prevailing trend. Therefore, several stimuli are helping organization to move toward environmental sustainability. The concept of green supply chain management can help provide a strategic framework to develop a customized sustainability roadmap for each organization. In this regard, this paper is mainly focused on presenting a strategic decision making framework that will assist top level decision-making issues. This decision-making tool is based on literature and practice in the area of environmentally conscious business practices. The goal of this paper will be on the components and parameters of green supply chain management and how they serve as a baseline for the decision framework. Later, the applicability of a multi-input multi-output decision model (MIMO), will be analyzed as the analytical network process, within the green supply chain.

Keywords: Multi-attribute, Green Supply Chain, Environmental, Sustainability

Procedia PDF Downloads 138
5551 Computation of Radiotherapy Treatment Plans Based on CT to ED Conversion Curves

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Radiotherapy treatment planning computers use CT data of the patient. For the computation of a treatment plan, treatment planning system must have an information on electron densities of tissues scanned by CT. This information is given by the conversion curve CT (CT number) to ED (electron density), or simply calibration curve. Every treatment planning system (TPS) has built in default CT to ED conversion curves, for the CTs of different manufacturers. However, it is always recommended to verify the CT to ED conversion curve before actual clinical use. Objective of this study was to check how the default curve already provided matches the curve actually measured on a specific CT, and how much it influences the calculation of a treatment planning computer. The examined CT scanners were from the same manufacturer, but four different scanners from three generations. The measurements of all calibration curves were done with the dedicated phantom CIRS 062M Electron Density Phantom. The phantom was scanned, and according to real HU values read at the CT console computer, CT to ED conversion curves were generated for different materials, for same tube voltage 140 kV. Another phantom, CIRS Thorax 002 LFC which represents an average human torso in proportion, density and two-dimensional structure, was used for verification. The treatment planning was done on CT slices of scanned CIRS LFC 002 phantom, for selected cases. Interest points were set in the lungs, and in the spinal cord, and doses recorded in TPS. The overall calculated treatment times for four scanners and default scanner did not differ more than 0.8%. Overall interest point dose in bone differed max 0.6% while for single fields was maximum 2.7% (lateral field). Overall interest point dose in lungs differed max 1.1% while for single fields was maximum 2.6% (lateral field). It is known that user should verify the CT to ED conversion curve, but often, developing countries are facing lack of QA equipment, and often use default data provided. We have concluded that the CT to ED curves obtained differ in certain points of a curve, generally in the region of higher densities. This influences the treatment planning result which is not significant, but definitely does make difference in the calculated dose.

Keywords: Computation of treatment plan, conversion curve, radiotherapy, electron density

Procedia PDF Downloads 467
5550 The Automatisation of Dictionary-Based Annotation in a Parallel Corpus of Old English

Authors: Ana Elvira Ojanguren Lopez, Javier Martin Arista

Abstract:

The aims of this paper are to present the automatisation procedure adopted in the implementation of a parallel corpus of Old English, as well as, to assess the progress of automatisation with respect to tagging, annotation, and lemmatisation. The corpus consists of an aligned parallel text with word-for-word comparison Old English-English that provides the Old English segment with inflectional form tagging (gloss, lemma, category, and inflection) and lemma annotation (spelling, meaning, inflectional class, paradigm, word-formation and secondary sources). This parallel corpus is intended to fill a gap in the field of Old English, in which no parallel and/or lemmatised corpora are available, while the average amount of corpus annotation is low. With this background, this presentation has two main parts. The first part, which focuses on tagging and annotation, selects the layouts and fields of lexical databases that are relevant for these tasks. Most information used for the annotation of the corpus can be retrieved from the lexical and morphological database Nerthus and the database of secondary sources Freya. These are the sources of linguistic and metalinguistic information that will be used for the annotation of the lemmas of the corpus, including morphological and semantic aspects as well as the references to the secondary sources that deal with the lemmas in question. Although substantially adapted and re-interpreted, the lemmatised part of these databases draws on the standard dictionaries of Old English, including The Student's Dictionary of Anglo-Saxon, An Anglo-Saxon Dictionary, and A Concise Anglo-Saxon Dictionary. The second part of this paper deals with lemmatisation. It presents the lemmatiser Norna, which has been implemented on Filemaker software. It is based on a concordance and an index to the Dictionary of Old English Corpus, which comprises around three thousand texts and three million words. In its present state, the lemmatiser Norna can assign lemma to around 80% of textual forms on an automatic basis, by searching the index and the concordance for prefixes, stems and inflectional endings. The conclusions of this presentation insist on the limits of the automatisation of dictionary-based annotation in a parallel corpus. While the tagging and annotation are largely automatic even at the present stage, the automatisation of alignment is pending for future research. Lemmatisation and morphological tagging are expected to be fully automatic in the near future, once the database of secondary sources Freya and the lemmatiser Norna have been completed.

Keywords: corpus linguistics, historical linguistics, old English, parallel corpus

Procedia PDF Downloads 201
5549 A Holistic Approach of Cross-Cultural Management with Insight from Neuroscience

Authors: Mai Nguyen-Phuong-Mai

Abstract:

This paper incorporates insight from various models, studies and disciplines to construct a framework called the Inverted Pyramid Model. It is argued that such a framework has several advantages: (1) it reduces the shortcomings of the problem-focused approach that dominates the mainstream theories of cross-cultural management. With contributing insight from neuroscience, it suggests that training in business cross-cultural awareness should start with potential synergy emerged from differences instead of the traditional approach that focuses on the liability of foreigners and negative consequences of cultural distance. (2) The framework supports a dynamic and holistic way of analyzing cultural diversity by analyzing four major cultural units (global, national, organizational and group culture). (3) The framework emphasizes the role of individuals –an aspect of culture that is often ignored or regarded as a non-issue in the traditional approach. It is based on the notion that people don’t do business with a country, but work (in)directly with a unique person. And it is at this individual level that culture is made, personally, dynamically, and contextually. Insight from neuroscience provides significant evidence that a person can develop a multicultural mind, confirm and contradict, follow and reshape a culture, even when (s)he was previously an outsider to this culture. With this insight, the paper proposes a revision of the old adage (Think global – Act local) and change it into Think global – Plan local – Act individual.

Keywords: static–dynamic paradigm, cultural diversity, multicultural mind, neuroscience

Procedia PDF Downloads 113
5548 Small Micro and Medium Enterprises Perception-Based Framework to Access Financial Support

Authors: Melvin Mothoa

Abstract:

Small Micro and Medium Enterprises are very significant for the development of their market economies. They are the main creators of the new working places, and they present a vital core of the market economy in countries across the globe. Access to finance is identified as crucial for small, micro, and medium-sized enterprises for their growth and innovation. This paper is conceived to propose a perception-based SMME framework to aid in access to financial support. Furthermore, the study will address issues that impede SMMEs in South Africa from obtaining finance from financial institutions. The framework will be tested against data collected from 200 Small Micro & Medium Enterprises in the Gauteng province of South Africa. The study adopts a quantitative method, and the delivery of self-administered questionnaires to SMMEs will be the primary data collection tool. Structural equation modeling will be used to further analyse the data collected.

Keywords: finance, small business, growth, development

Procedia PDF Downloads 94
5547 Effect of Automatic Self Transcending Meditation on Perceived Stress and Sleep Quality in Adults

Authors: Divya Kanchibhotla, Shashank Kulkarni, Shweta Singh

Abstract:

Chronic stress and sleep quality reduces mental health and increases the risk of developing depression and anxiety as well. There is increasing evidence for the utility of meditation as an adjunct clinical intervention for conditions like depression and anxiety. The present study is an attempt to explore the impact of Sahaj Samadhi Meditation (SSM), a category of Automatic Self Transcending Meditation (ASTM), on perceived stress and sleep quality in adults. The study design was a single group pre-post assessment. Perceived Stress Scale (PSS) and the Pittsburgh Sleep Quality Index (PSQI) were used in this study. Fifty-two participants filled PSS, and 60 participants filled PSQI at the beginning of the program (day 0), after two weeks (day 16) and at two months (day 60). Significant pre-post differences for the perceived stress level on Day 0 - Day 16 (p < 0.01; Cohen's d = 0.46) and Day 0 - Day 60 (p < 0.01; Cohen's d = 0.76) clearly demonstrated that by practicing SSM, participants experienced reduction in the perceived stress. The effect size of the intervention observed on the 16th day of assessment was small to medium, but on the 60th day, a medium to large effect size of the intervention was observed. In addition to this, significant pre-post differences for the sleep quality on Day 0 - Day 16 and Day 0 - Day 60 (p < 0.05) clearly demonstrated that by practicing SSM, participants experienced improvement in the sleep quality. Compared with Day 0 assessment, participants demonstrated significant improvement in the quality of sleep on Day 16 and Day 60. The effect size of the intervention observed on the 16th day of assessment was small, but on the 60th day, a small to medium effect size of the intervention was observed. In the current study we found out that after practicing SSM for two months, participants reported a reduction in the perceived stress, they felt that they are more confident about their ability to handle personal problems, were able to cope with all the things that they had to do, felt that they were on top of the things, and felt less angered. Participants also reported that their overall sleep quality improved; they took less time to fall asleep; they had less disturbances in sleep and less daytime dysfunction due to sleep deprivation. The present study provides clear evidence of the efficacy and safety of non-pharmacological interventions such as SSM in reducing stress and improving sleep quality. Thus, ASTM may be considered a useful intervention to reduce psychological distress in healthy, non-clinical populations, and it can be an alternative remedy for treating poor sleep among individuals and decreasing the use of harmful sedatives.

Keywords: automatic self transcending meditation, Sahaj Samadhi meditation, sleep, stress

Procedia PDF Downloads 123
5546 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field

Authors: Jeronimo Cox, Tomonari Furukawa

Abstract:

Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.

Keywords: motion tracking, sensor fusion, magnetometer, state estimation

Procedia PDF Downloads 70
5545 Calibration of Mini TEPC and Measurement of Lineal Energy in a Mixed Radiation Field Produced by Neutrons

Authors: I. C. Cho, W. H. Wen, H. Y. Tsai, T. C. Chao, C. J. Tung

Abstract:

Tissue-equivalent proportional counter (TEPC) is a useful instrument used to measure radiation single-event energy depositions in a subcellular target volume. The quantity of measurements is the microdosimetric lineal energy, which determines the relative biological effectiveness, RBE, for radiation therapy or the radiation-weighting factor, WR, for radiation protection. TEPC is generally used in a mixed radiation field, where each component radiation has its own RBE or WR value. To reduce the pile-up effect during radiotherapy measurements, a miniature TEPC (mini TEPC) with cavity size in the order of 1 mm may be required. In the present work, a homemade mini TEPC with a cylindrical cavity of 1 mm in both the diameter and the height was constructed to measure the lineal energy spectrum of a mixed radiation field with high- and low-LET radiations. Instead of using external radiation beams to penetrate the detector wall, mixed radiation fields were produced by the interactions of neutrons with TEPC walls that contained small plugs of different materials, i.e. Li, B, A150, Cd and N. In all measurements, mini TEPC was placed at the beam port of the Tsing Hua Open-pool Reactor (THOR). Measurements were performed using the propane-based tissue-equivalent gas mixture, i.e. 55% C3H8, 39.6% CO2 and 5.4% N2 by partial pressures. The gas pressure of 422 torr was applied for the simulation of a 1 m diameter biological site. The calibration of mini TEPC was performed using two marking points in the lineal energy spectrum, i.e. proton edge and electron edge. Measured spectra revealed high lineal energy (> 100 keV/m) peaks due to neutron-capture products, medium lineal energy (10 – 100 keV/m) peaks from hydrogen-recoil protons, and low lineal energy (< 10 keV/m) peaks of reactor photons. For cases of Li and B plugs, the high lineal energy peaks were quite prominent. The medium lineal energy peaks were in the decreasing order of Li, Cd, N, A150, and B. The low lineal energy peaks were smaller compared to other peaks. This study demonstrated that internally produced mixed radiations from the interactions of neutrons with different plugs in the TEPC wall provided a useful approach for TEPC measurements of lineal energies.

Keywords: TEPC, lineal energy, microdosimetry, radiation quality

Procedia PDF Downloads 456