Search results for: vehicle factors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11557

Search results for: vehicle factors

11527 Evaluation of the Impact of Pavement Roughness on Vehicle Emissions by HDM-4

Authors: Muhammad Azhar, Arshad Hussain

Abstract:

Vehicular emissions have increased in recent years due to rapid growth in world traffic resulting in an increase in associated problems such as air pollution and climate change, therefore it’s necessary to control vehicle emissions. This study looks at the effect of road maintenance on vehicle emissions. The Highway Development and Management Tool (HDM-4) was used to find the effect of road maintenance on vehicle emissions. Key data collected were traffic volume and composition, vehicle characteristics, pavement characteristics and climate data of the study area. Two options were analysed using the HDM-4 software; the base case or do nothing while the second is overlay maintenance. The study also showed a strong correlation between average roughness and yearly emission levels in both the alternatives. Finally, the study showed that proper maintenance reduces the roughness and emissions.

Keywords: vehicle emissions, road roughness, IRI, maintenance, HDM-4, CO2

Procedia PDF Downloads 243
11526 Evaluation of Vehicle Classification Categories: Florida Case Study

Authors: Ren Moses, Jaqueline Masaki

Abstract:

This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.

Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic

Procedia PDF Downloads 164
11525 Vehicle to Grid Potential for Solar Powered Electric Vehicle

Authors: Marcin Kowalski, Tomasz Wiktor, Piotr Ladonski, Krzysztof Bortnowski, Szymon Przybyl, Mateusz Grzesiak

Abstract:

This paper provides a detailed overview of the so-called smart grid or vehicle-to-grid idea, including a description of our way of implementation. The primary targets of this paper are technical students, young constructors, visionaries, however more experienced designers may find useful ideas for developing their vehicles. The publication will also be useful for home-grown builders who want to save on electricity. This article as well summarizes the advantages and disadvantages of V2G solution and might be helpful for students teams planning to participate in Bridgestone World Solar Challenge.

Keywords: solar powered vehicle, vehicle to grid, electric car, v2g, bridgestone world solar challenge

Procedia PDF Downloads 178
11524 The Design and Modeling of Intelligent Learners Assistance System (ILASS)

Authors: Jelili Kunle Adedeji, Toeb Akorede Akinbola

Abstract:

The problem of vehicle mishap as a result of miscalculation, recklessness, or malfunction of some part in a vehicle is acknowledged to be a global issue. In most of the cases, it results into death or life injuries, all over the world; the issue becomes a nightmare to the stakeholders on how to curb mishaps on our roads due to these endemic factors. Hence this research typically examined the design of a device, specifically for learners that can lead to a society of intelligent vehicles (traffic) without withdrawing the driving authority from them, unlike pre-existing systems. Though ILASS shears a lot of principle with existing advance drivers assistance systems, yet there are two fundamental differences between ILASS system and existing systems. Firstly ILASS is meant to accept continuous input from the throttle at all time such that the devices will not constraint the driving process unnecessarily and ensure a change of speed at any point in time. Secondly, it made use of a variable threshold distance between the host vehicle and front vehicle which can be set by the host driver under the constraint of road maintenance agency, who communicates the minimum possible threshold for a different lane to the host vehicle. The results obtained from the simulation of the ILASS system concluded that ILASS is a good solution to road accidents, particularly road accident which occurs as a result of driving at high speed.

Keywords: front-vehicle, host-speed, threshold-distance, ILASS

Procedia PDF Downloads 155
11523 Rim Size Optimization Using Mathematical Modelling

Authors: M. Tan, N. N. Wan, N. Ramli, N. H. Hassan

Abstract:

Car drivers would always like to have custom wheel on their car for two reasons; to improve their car's aesthetic beauty and to improve their car handling. As the size of the rims or wheels played an important role in influencing the way of car handles around turns, this paper aims to present the optimality of rim size that drivers should have known while changing their rim. There are three factors that drivers should have considered while changing their rim: rim size, its weight and material of which they are made. Using mathematical analysis, this paper will focus on only one factor, which is rim size. Factors that are considered in calculating the optimum rim size are the vehicle rim radius, tire height and weight, and aspect ratio. This paper has found that there are limitations in percentage change in rim size from the original tire size. Failure to have the right offset size may cause problems in maneuvering the vehicle.

Keywords: mathematical analysis, optimum wheel size, percentage change, custom wheel

Procedia PDF Downloads 477
11522 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller

Procedia PDF Downloads 221
11521 Explanatory Variables for Crash Injury Risk Analysis

Authors: Guilhermina Torrao

Abstract:

An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.

Keywords: crash, exploratory, injury, risk, variables, vehicle

Procedia PDF Downloads 106
11520 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 420
11519 A Practical and Efficient Evaluation Function for 3D Model Based Vehicle Matching

Authors: Yuan Zheng

Abstract:

3D model-based vehicle matching provides a new way for vehicle recognition, localization and tracking. Its key is to construct an evaluation function, also called fitness function, to measure the degree of vehicle matching. The existing fitness functions often poorly perform when the clutter and occlusion exist in traffic scenarios. In this paper, we present a practical and efficient fitness function. Unlike the existing evaluation functions, the proposed fitness function is to study the vehicle matching problem from both local and global perspectives, which exploits the pixel gradient information as well as the silhouette information. In view of the discrepancy between 3D vehicle model and real vehicle, a weighting strategy is introduced to differently treat the fitting of the model’s wireframes. Additionally, a normalization operation for the model’s projection is performed to improve the accuracy of the matching. Experimental results on real traffic videos reveal that the proposed fitness function is efficient and robust to the cluttered background and partial occlusion.

Keywords: 3D-2D matching, fitness function, 3D vehicle model, local image gradient, silhouette information

Procedia PDF Downloads 374
11518 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract:

Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.

Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx

Procedia PDF Downloads 189
11517 Study on Impact of Road Loads on Full Vehicle Squeak and Rattle Performance

Authors: R. Praveen, B. R. Chandan Ravi, M. Harikrishna

Abstract:

Squeak and rattle noises are the most annoying transient vehicle noises produced due to different terrain conditions. Interpretation and prohibition of squeak and rattle noises are the dominant aspects of a vehicle refinement. This paper describes the computer-aided engineering (CAE) approach to evaluating the full vehicle squeak and rattle performance with the measured road surface profile as enforced excitation at the tire patch points. The E-Line methodology has been used to predict the relative displacement at the interface points and the risk areas were identified. Squeak and rattle performance has been evaluated at different speeds and at different road conditions to understand the vehicle characteristics. The competence of the process in predicting the risk and root cause of the problems showcased us a pleasing conformity between the physical testing and CAE simulation results.

Keywords: e-line, enforced excitation, full vehicle, squeak and rattle, road excitation

Procedia PDF Downloads 124
11516 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics

Procedia PDF Downloads 304
11515 Vehicle Type Classification with Geometric and Appearance Attributes

Authors: Ghada S. Moussa

Abstract:

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification

Procedia PDF Downloads 318
11514 Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)

Authors: Gondu Vykunta Rao, Madhuri Bayya, Aruna Bharathi M., Paramesw Chidamparam, B. Murali

Abstract:

The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development.

Keywords: electric vehicle, simulation in the loop (SIL), model in loop (MIL), hardware in loop (HIL), dynamos, model-based development (MBD), permanent magnet synchronous motor (PMSM), current control (CC), field-oriented control (FOC), regenerative braking

Procedia PDF Downloads 88
11513 Numerical Investigation of Aerodynamic Analysis on Passenger Vehicle

Authors: Cafer Görkem Pınar, İlker Coşar, Serkan Uzun, Atahan Çelebi, Mehmet Ali Ersoy, Ali Pınarbaşı

Abstract:

In this study, it was numerically investigated that a 1:1 scale model of the Renault Clio MK4 SW brand vehicle aerodynamic analysis was performed in the commercial computational fluid dynamics (CFD) package program of ANSYS CFX 2021 R1 under steady, subsonic, and 3-D conditions. The model of vehicle used for the analysis was made independent of the number of mesh elements, and the k-epsilon turbulence model was applied during the analysis. Results were interpreted as streamlines, pressure gradient, and turbulent kinetic energy contours around the vehicle at 50 km/h and 100 km/h speeds. In addition, the validity of the analysis was decided by comparing the drag coefficient of the vehicle with the values in the literature. As a result, the pressure gradient contours of the taillight of the Renault Clio MK4 SW vehicle were examined, and the behavior of the total force at speeds of 50 km/h and 100 km/h was interpreted.

Keywords: CFD, k-epsilon, aerodynamics, drag coefficient, taillight

Procedia PDF Downloads 119
11512 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 58
11511 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 421
11510 A United Nations Safety Compliant Urban Vehicle Design

Authors: Marcelo R. G. Duarte, Marcilio Alves

Abstract:

Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.

Keywords: electric urban vehicle, finite element method, global human body model, pedestrian safety, road safety

Procedia PDF Downloads 168
11509 Variability in Saturation Flow and Traffic Performance at Urban Signalized Intersection

Authors: P. N. Salini, B. Anish Kini, R. Ashalatha

Abstract:

At signalized intersections with heterogeneous traffic, the percentage share of different vehicle categories have a bearing on the inter-vehicle space utilization, which eventually impacts the saturation flow. This paper analyzed the impact of the percentage share of various vehicle categories in the traffic stream on the saturation flow at signalized intersections by video graphing major intersections with varying geometry in Kerala, India. It was found that as the percentage share of two-wheelers increases, the saturation flow at signalized intersections increases and vice-versa for the percentage share of cars. The effect of bus blockage and parking maneuvers on the saturation flow were also studied. As the distance of bus blockage increases from the stop line, the effect on the saturation flow decreases, while with more buses stopping at the same bus stop, the saturation flow reduces further. The study revealed that with higher kerbside parking maneuvers on the upstream, the saturation flow reduces, and with an increase in the distance of the parking maneuver from the stop line, the effect on the saturation flow decreases. The adjustment factors for bus blockage due to bus stops within 75m downstream and parking maneuvers within 75m upstream of the intersection have been established for mixed traffic conditions. These adjustment factors could empower the urban planners, enforcement personnel and decision-makers to estimate the reduction in the capacity of signalized intersections for suggesting improvements in the form of parking restrictions/ bus stop relocation for existing intersections or make design changes for planned intersections.

Keywords: signalized intersection, saturation flow, adjustment factors, capacity

Procedia PDF Downloads 101
11508 Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation

Authors: Zilong Peng, Jun Fan

Abstract:

With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather.

Keywords: rain-the-roof noise, vehicle, finite element method, statistical energy analysis

Procedia PDF Downloads 181
11507 An Investigation into the Use of Overset Mesh for a Vehicle Aerodynamics Case When Driving in Close Proximity

Authors: Kushal Kumar Chode, Remus Miahi Cirstea

Abstract:

In recent times, the drive towards more efficient vehicles and the increase in the number of vehicle on the roads has driven the aerodynamic researchers from studying the vehicle in isolation towards understanding the benefits of vehicle platooning. Vehicle platooning is defined as a series of vehicles traveling in close proximity. Due to the limitations in size and load measurement capabilities for the wind tunnels facilities, it is very difficult to perform this investigation experimentally. In this paper, the use of chimera or overset meshing technique is used within the STARCCM+ software to model the flow surrounding two identical vehicle models travelling in close proximity and also during an overtaking maneuver. The results are compared with data obtained from a polyhedral mesh and identical physics conditions. The benefits in terms of computational time and resources and the accuracy of the overset mesh approach are investigated.

Keywords: chimera mesh, computational accuracy, overset mesh, platooning vehicles

Procedia PDF Downloads 330
11506 Investigation of the Effects of Biodiesel Blend on Particulate-Phase Exhaust Emissions from a Light Duty Diesel Vehicle

Authors: B. Wang, W. H. Or, S.C. Lee, Y.C. Leung, B. Organ

Abstract:

This study presents an investigation of diesel vehicle particulate-phase emissions with neat ultralow sulphur diesel (B0, ULSD) and 5% waste cooking oil-based biodiesel blend (B5) in Hong Kong. A Euro VI light duty diesel vehicle was tested under transient (New European Driving Cycle (NEDC)), steady-state and idling on a chassis dynamometer. Chemical analyses including organic carbon (OC), elemental carbon (EC), as well as 30 polycyclic aromatic hydrocarbons (PAHs) and 10 oxygenated PAHs (oxy-PAHs) were conducted. The OC fuel-based emission factors (EFs) for B0 ranged from 2.86 ± 0.33 to 7.19 ± 1.51 mg/kg, and those for B5 ranged from 4.31 ± 0.64 to 15.36 ± 3.77 mg/kg, respectively. The EFs of EC were low for both fuel blends (0.25 mg/kg or below). With B5, the EFs of total PAHs were decreased as compared to B0. Specifically, B5 reduced total PAH emissions by 50.2%, 30.7%, and 15.2% over NEDC, steady-state and idling, respectively. It was found that when B5 was used, PAHs and oxy-PAHs with lower molecular weight (2 to 3 rings) were reduced whereas PAHs/oxy-PAHs with medium or high molecular weight (4 to 7 rings) were increased. Our study suggests the necessity of taking atmospheric and health factors into account for biodiesel application as an alternative motor fuel.

Keywords: biodiesel, OC/EC, PAHs, vehicular emission

Procedia PDF Downloads 147
11505 The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation

Authors: Judith Mwakalonge, Geophrey Mbatta, Cuthbert Ruseruka, Gurcan Comert, Saidi Siuhi

Abstract:

Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated.

Keywords: electric vehicles, EV charging stations, social economic factors, charging networks

Procedia PDF Downloads 59
11504 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques

Authors: Praveen Battula

Abstract:

Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.

Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics

Procedia PDF Downloads 430
11503 Design and Development of a Prototype Vehicle for Shell Eco-Marathon

Authors: S. S. Dol

Abstract:

Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.

Keywords: energy efficient, drag force, chassis, powertrain

Procedia PDF Downloads 304
11502 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car

Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee

Abstract:

Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.

Keywords: numerical study, air dam, flow field, pressure distribution

Procedia PDF Downloads 187
11501 Dynamic Modeling of an Unmanned Aerial Vehicle with Petro-Engine

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

In the following article, we present the dynamic simulation of an unmanned aerial vehicle with main fuel engine in the middle to carry most of the weight. This configuration will increase the flight time of the vehicle for a given payload size as opposed to the traditional quad rotor, where only DC motors are used. A parametric study to investigate the effect of the propellers ratio (main rotor propeller diameter to secondary rotor propeller diameter), the angle of incidence of the main rotor and the twist angle of the main rotor blades on selected performance criteria is presented.

Keywords: unmanned aerial vehicle (UAV), quadrotor, petrol quadcopter, flying robot

Procedia PDF Downloads 430
11500 Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β

Authors: Saidi Abdelkrim, Hamouine Abdelmadjid, Abdellatif Megnounif

Abstract:

The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations.

Keywords: vehicle-bridge interaction, Newmark-β, MATLAB code

Procedia PDF Downloads 578
11499 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: active vehicle, cooperation, petri nets, trust management, VANET

Procedia PDF Downloads 379
11498 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 114