Search results for: surface suction gripper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6712

Search results for: surface suction gripper

6682 Control Flow around NACA 4415 Airfoil Using Slot and Injection

Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine

Abstract:

One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient

Keywords: CFD, control flow, lift, slot

Procedia PDF Downloads 197
6681 Effect of Temperature on the Water Retention Capacity of Liner Materials

Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla

Abstract:

Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.

Keywords: soil water retention curve, sand-expansive clay liner, suction, temperature

Procedia PDF Downloads 139
6680 On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition

Authors: Bashiru Abdullahi, Isah Bala Yabo, Ibrahim Yakubu Seini

Abstract:

In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature.

Keywords: heat transfer, thermal radiation, porous channel, MHD, transient, convective boundary condition

Procedia PDF Downloads 121
6679 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid

Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop

Abstract:

In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.

Keywords: heat transfer, nanofluid, shrinking surface, stability analysis, three-dimensional flow

Procedia PDF Downloads 287
6678 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils

Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana

Abstract:

This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.

Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction

Procedia PDF Downloads 64
6677 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Saaid, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, experimental investigation, aerodynamic performance

Procedia PDF Downloads 437
6676 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, DU96-W180 airfoil, flow streams

Procedia PDF Downloads 378
6675 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD

Procedia PDF Downloads 235
6674 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients

Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari

Abstract:

The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.

Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation

Procedia PDF Downloads 84
6673 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis

Procedia PDF Downloads 417
6672 Flow-Control Effectiveness of Convergent Surface Indentations on an Aerofoil at Low Reynolds Numbers

Authors: Neel K. Shah

Abstract:

Passive flow control on aerofoils has largely been achieved through the use of protrusions such as vane-type vortex generators. Consequently, innovative flow-control concepts should be explored in an effort to improve current component performance. Therefore, experimental research has been performed at The University of Manchester to evaluate the flow-control effectiveness of a vortex generator made in the form of a surface indentation. The surface indentation has a trapezoidal planform. A spanwise array of indentations has been applied in a convergent orientation around the maximum-thickness location of the upper surface of a NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. The baseline model has been found to suffer from a laminar separation bubble at low AoA. The application of the indentations at 3° AoA has considerably shortened the separation bubble. The indentations achieve this by shedding up-flow pairs of streamwise vortices. Despite the considerable reduction in bubble length, the increase in leading-edge suction due to the shorter bubble is limited by the removal of surface curvature and blockage (increase in surface pressure) caused locally by the convergent indentations. Furthermore, the up-flow region of the vortices, which locally weakens the pressure recovery around the trailing edge of the aerofoil by thickening the boundary layer, also contributes to this limitation. Due to the conflicting effects of the indentations, the changes in the pressure-lift and pressure-drag coefficients, i.e., cl,p and cd,p, are small. Nevertheless, the indentations have improved cl,p and cd,p beyond the uncertainty range, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. The wake measurements show that turbulence intensity and Reynolds stresses have considerably increased in the indented case, thus implying that the indentations increase the viscous drag on the model. In summary, the convergent indentations are able to reduce the size of the laminar separation bubble, but conversely, they are not highly effective in reducing cd,p at the tested Reynolds number.

Keywords: aerofoil flow control, laminar separation bubbles, low Reynolds-number flows, surface indentations

Procedia PDF Downloads 226
6671 Cover Layer Evaluation in Soil Organic Matter of Mixing and Compressed Unsaturated

Authors: Nayara Torres B. Acioli, José Fernando T. Jucá

Abstract:

The uncontrolled emission of gases in urban residues' embankment located near urban areas is a social and environmental problem, common in Brazilian cities. Several environmental impacts in the local and global scope may be generated by atmospheric air contamination by the biogas resulted from the decomposition of solid urban materials. In Brazil, the cities of small size figure mostly with 90% of all cities, with the population smaller than 50,000 inhabitants, according to the 2011 IBGE' census, most of the landfill covering layer is composed of clayey, pure soil. The embankments undertaken with pure soil may reach up to 60% of retention of methane, for the other 40% it may be dispersed into the atmosphere. In face of this figures the oxidative covering layer is granted some space of study, envisaging to reduce this perceptual available in the atmosphere, releasing, in spite of methane, carbonic gas which is almost 20 times as less polluting than Methane. This paper exposes the results of studies on the characteristics of the soil used for the oxidative coverage layer of the experimental embankment of Solid Urban Residues (SUR), built in Muribeca-PE, Brazil, supported of the Group of Solid Residues (GSR), located at Federal University of Pernambuco, through laboratory vacuum experiments (determining the characteristics curve), granularity, and permeability, that in soil with saturation over 85% offers dramatic drops in the test of permeability to the air, by little increments of water, based in the existing Brazilian norm for this procedure. The suction was studied, as in the other tests, from the division of prospection of an oxidative coverage layer of 60cm, in the upper half (0.1 m to 0.3 m) and lower half (0.4 m to 0.6 m). Therefore, the consequences to be presented from the lixiviation of the fine materials after 5 years of finalization of the embankment, what made its permeability increase. Concerning its humidity, it is most retained in the upper part, that comprises the compound, with a difference in the order of 8 percent the superior half to inferior half, retaining the least suction from the surface. These results reveal the efficiency of the oxidative coverage layer in retaining the rain water, it has a lower cost when compared to the other types of layer, offering larger availability of this layer as an alternative for a solution for the appropriate disposal of residues.

Keywords: oxidative coverage layer, permeability, suction, saturation

Procedia PDF Downloads 289
6670 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet

Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu

Abstract:

The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.

Keywords: Boundary layer, nanofluid, shrinking sheet, Brownian motion, thermophoresis, similarity solution

Procedia PDF Downloads 415
6669 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices

Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah

Abstract:

Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.

Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow

Procedia PDF Downloads 265
6668 Investigation of Slope Stability in Gravel Soils in Unsaturated State

Authors: Seyyed Abolhasan Naeini, Ehsan Azini

Abstract:

In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software.  we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground.  Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.

Keywords: slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil

Procedia PDF Downloads 175
6667 Effects of Surface Topography on Roughness of Glazed Ceramic Substrates

Authors: R. Sarjahani, M. Sheikhattar, S. Javadpour, B. Hashemi

Abstract:

Glazes and their surface characterization is an important subject for ceramic industries. Fabrication of a super smooth surface resistant to stains is a big improvement for those industries. In this investigation, surface topography of popular glazes such as Zircon and Titania based opaque glazes, calcium based matte glaze and transparent glaze has been analyzed by Marsurf M300, SEM, EDS and XRD. Results shows that surface roughness of glazes seriously depends on surface crystallinity, crystal size and shapes.

Keywords: crystallinity, glaze, surface roughness, topography

Procedia PDF Downloads 567
6666 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 179
6665 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand

Authors: Won Taek Oh, Adin Richard

Abstract:

Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.

Keywords: critical height, matric suction, unsaturated soil, unsupported trench

Procedia PDF Downloads 120
6664 Numerical Assessment on the Unsaturated Behavior of Silty Sand

Authors: Seyed Abolhassan Naeini, Ali Namaei

Abstract:

This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.

Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test

Procedia PDF Downloads 119
6663 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions

Procedia PDF Downloads 432
6662 Bearing Capacity of Sulphuric Acid Content Soil

Authors: R. N. Khare, J. P. Sahu, Rajesh Kumar Tamrakar

Abstract:

Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4.

Keywords: soil compaction, H2SO4, soil water, water conditions

Procedia PDF Downloads 539
6661 Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction.

Keywords: porous pipe, reactive viscous fluid, transient natural-convective flow, analytical solution

Procedia PDF Downloads 297
6660 Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes

Authors: Bouziane Mohamed Tewfik

Abstract:

In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

Keywords: unsaturated soil, slope stability, rainfall infiltration, numerical analysis

Procedia PDF Downloads 468
6659 Organic Rejection and Membrane Fouling with Inorganic Alumina Membrane for Industrial Wastewater Treatment

Authors: Rizwan Ahmad, Soomin Chang, Daeun Kwon, Jeonghwan Kim

Abstract:

Interests in an inorganic membrane are growing rapidly for industrial wastewater treatment due to its excellent chemical and thermal stability over polymeric membrane. Nevertheless, understanding of the membrane rejection and fouling rate caused by the deposit of contaminants on membrane surface and within membrane pores through inorganic porous membranes still requires much attention. Microfiltration alumina membranes were developed and applied for the industrial wastewater treatment to investigate rejection efficiency of organic contaminant and membrane fouling at various operational conditions. In this study, organic rejection and membrane fouling were investigated by using the alumina flat-tubular membrane developed for the treatment of industrial wastewaters. The flat-tubular alumina membranes were immersed in a fluidized membrane reactor added with granular activated carbon (GAC) particles. Fluidization was driven by recirculating a bulk industrial wastewater along membrane surface through the reactor. In the absence of GAC particles, for hazardous anionic dye contaminants, functional group characterized by the organic contaminant was found as one of the main factors affecting both membrane rejection and fouling rate. More fouling on the membrane surface led to the existence of dipolar characterizations and this was more pronounced at lower solution pH, thereby improving membrane rejection accordingly. Similar result was observed with a real metal-plating wastewater. Strong correlation was found that higher fouling rate resulted in higher organic rejection efficiency. Hydrophilicity exhibited by alumina membrane improved the organic rejection efficiency of the membrane due to the formation of hydrophilic fouling layer deposited on it. In addition, less surface roughness of alumina membrane resulted in less fouling rate. Regardless of the operational conditions applied in this study, fluidizing the GAC particles along the surface of alumina membrane was very effective to enhance organic removal efficiency higher than 95% and provide an excellent tool to reduce membrane fouling. Less than 0.1 bar as suction pressure was maintained with the alumina membrane at 25 L/m²hr of permeate set-point flux during the whole operational periods without performing any backwashing and chemical enhanced cleaning for the membrane.

Keywords: alumina membrane, fluidized membrane reactor, industrial wastewater, membrane fouling, rejection

Procedia PDF Downloads 167
6658 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee

Abstract:

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.

Keywords: hot-surface, jet impingement, quenching, stagnation point

Procedia PDF Downloads 610
6657 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip

Authors: Gilbert Makanda

Abstract:

The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.

Keywords: free convection, suction/injection, partial slip, viscous dissipation

Procedia PDF Downloads 245
6656 Surface Modification of Polycarbonate Substrates via Direct Fluorination to Promote the Staining with Methylene Blue

Authors: Haruka Kaji, Jae-Ho Kim, Yonezawa Susumu

Abstract:

The surface of polycarbonate (PC) was modified with fluorine gas at 25℃ and 10-380 Torr for one h. The surface roughness of the fluorinated PC samples was approximately five times larger than that (1.2 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds (e.g., -C=O and C-Hx) derived from raw PC decreased and were converted into fluorinated bonds (e.g., -CFx) after surface fluorination. These fluorinated bonds showed higher electronegativity according to the zeta potential results. Fluorinated PC could be strained with the methylene blue basic dye because of the increased surface roughness and the negatively charged surface.

Keywords: dyeable layer, polycarbonate, surface fluorination, zeta potential

Procedia PDF Downloads 180
6655 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology

Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan

Abstract:

Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.

Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation

Procedia PDF Downloads 459
6654 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption

Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa

Abstract:

The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.

Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential

Procedia PDF Downloads 121
6653 The Effect of Surface Roughness on the Fatigue Life of SCM440 Steel

Authors: C. Han, H. Kim, S. Park

Abstract:

The purpose of the present study is to analyze the effect of surface roughness on fatigue life of SCM440 steel. Two groups of specimens were made from SCM440 steel with and without surface polished after forging process and resulted in different values of surface roughness. The difference of the surface roughness between two groups was clearly distinguished even to the naked eye. Surface roughness of both groups of the specimens was quantitatively measured by a roughness measuring device, Talysurf series2 (Taylor-Hobson Co., USA). Average roughness (Ra) and maximum roughness depth (Rmax) values were obtained by scanning 45 mm with a speed of 0.25 mm/s. Fatigue tests were conducted using a three-point bending method with a cyclic sinusoidal profile of 5 Hz, stress ratio of R = 0.1 and reference life for fatigue limit of 1 × 106 cycles. Ra and Rmax without surface polished were 10.497 ± 1.721 μm and 87.936 ± 16.210 μm, respectively while those values with surface polished were much smaller (ongoing measurements). Fatigue lives of the surface-polished specimens achieved approximately 1 × 106 cycles under the maximum stress of 900 MPa, which was 10 times longer than those of the surface-untreated specimens with an average roughness of 10.082 μm. The results showed that an increase in surface roughness values led to a decrease in fatigue lives.

Keywords: surface roughness, fatigue test, fatigue life, SCM440 steel

Procedia PDF Downloads 353