Search results for: nitropropionic acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3350

Search results for: nitropropionic acid

3320 Reducing Phytic Acid in Rice Grain by Targeted Mutagenesis of a Phospholipase D Gene

Authors: Muhammad Saad Shoaib Khan, Rasbin Basnet, Qingyao Shu

Abstract:

Phospholipids are one of the major classes of lipid comprising 10% of total grain lipid in rice. Phospholipids are the main phosphorus containing lipid in the rice endosperm, contributing to rice palatability and seed storage property. However, in the rice grain, the majority of phosphorus occur in the form of phytic acid and are highly abundant in the bran. Phytic acid, also known as hexaphosphorylated inositol (IP6), are strong chelating agents which reduces the bioavailability of essential dietary nutrients and are therefore less desirable by rice breeders. We used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (PLDα1), which is responsible for the degradation of phospholipids into phosphatidic acid (PA). In the mutants, we found a significant reduction in the concentration of phytic acid in the grain as compared to the wild-type. The biochemical analysis of the PLDα1 mutants showed that the decrease in production of phosphatidic acid is due to reduced accumulation of CDP-diacylglycerolderived phosphatidylinositol (PI), ultimately leading to lower accumulation of phytic acid in mutants. These results showed that loss of function of PLD in rice leads to lower production of phytic acid, suggesting the potential application of Ospldα1 in breeding rice with less phytic acid.

Keywords: CRISPR/Cas9, phospholipase D, phytic acid, rice

Procedia PDF Downloads 158
3319 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: characterization, HPLC, Penicillin V acid, related substances

Procedia PDF Downloads 279
3318 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells

Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee

Abstract:

Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region

Keywords: anti-inflammation, myristic acid, ROS, ultraviolet light

Procedia PDF Downloads 205
3317 Biologically Active Caffeic Acid-Derived Biopolymer

Authors: V. Barbakadze, L. Gogilashvili, L. Amiranashvili, M. Merlani, K. Mulkijanyan

Abstract:

The high-molecular water-soluble preparations from several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S.officinale and Anchusa italica were isolated. According to IR, 13C and 1H NMR, APT, 1D NOE, 2D heteronuclear 1H/13C HSQC and 2D DOSY experiments, the main chemical constit¬uent of these preparations was found to be caffeic acid-derived polyether, namely poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Most carboxylic groups of this caffeic acid-derived polymer of A. italica are methylated.

Keywords: Anchusa, poly[3-(3, 4-dihydroxyphenyl)glyceric acid], poly[oxy-1-carboxy-2-(3, 4-dihydroxyphenyl)ethylene], Symphytum

Procedia PDF Downloads 329
3316 Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform

Authors: A. Bara, D. Barkat

Abstract:

Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2.

Keywords: capric acid, Cobalt(II), copper(II), liquid-liquid extraction

Procedia PDF Downloads 441
3315 Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles

Authors: Nurul Aqilah Mohd Zaini, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products.

Keywords: DDGS, alkaline pretreatment, SSF, D-lactic acid

Procedia PDF Downloads 342
3314 Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants

Authors: Feng Ju Chuang, Yu Wen Wang, Tai Jung Hsieh, Shyh Ming Kuo

Abstract:

Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated.

Keywords: collagen synthesis, macrophage, NIH3T3 cells, polylactic acid particles

Procedia PDF Downloads 113
3313 Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction

Authors: Hyun Lim, Dong Sook Min, Han Eul Yun, Kil Tae Kim, Ya Nan Sun, Young Ho Kim, Hyun Pyo Kim

Abstract:

Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation.

Keywords: acanthoic acid, Acanthopanax koreanum, cartilage, impressic acid, matrix metalloproteinase

Procedia PDF Downloads 364
3312 Degradation of Polycyclic Aromatic Hydrocarbons-Contaminated Soil by Proxy-Acid Method

Authors: Reza Samsami

Abstract:

The aim of the study was to degradation of polycyclic aromatic hydrocarbons (PAHs) by proxy-acid method. The amounts of PAHs were determined in a silty-clay soil sample of an aged oil refinery field in Abadan, Iran. Proxy-acid treatment method was investigated. The results have shown that the proxy-acid system is an effective method for degradation of PAHs. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method.

Keywords: proxy-acid treatment, silty-clay soil, PAHs, degradation

Procedia PDF Downloads 269
3311 Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production

Authors: I. Sarenkova, I. Ciprovica, I. Cinkmanis

Abstract:

Lactobionic acid is a disaccharide formed from gluconic acid and galactose, and produced by oxidation of lactose. Productivity of lactobionic acid by microbial synthesis can be affected by various factors, and one of them is a presence of potassium, magnesium and manganese ions. In order to extend lactobionic acid production efficiency, it is necessary to increase the yield of lactobionic acid by optimising the fermentation conditions and available substrates for Pseudomonas taetrolens growth. The object of the research was to determinate the application of K2HPO4, MnSO4, MgSO4 × 7H2O salts in different concentration for effective lactose oxidation to lactobionic acid by Pseudomonas taetrolens. Pseudomonas taetrolens NCIB 9396 (NCTC, England) and Pseudomonas taetrolens DSM 21104 (DSMZ, Germany) were used for the study. The acid whey was used as the study object. The content of lactose in whey samples was determined using MilcoScanTM Mars (Foss, Denmark) and high performance liquid chromatography (Shimadzu LC 20 Prominence, Japan). The content of lactobionic acid in whey samples was determined using the high performance liquid chromatography. The impact of studied salts differs, Mn2+ and Mg2+ ions enhanced fermentation instead of K+ ions. Results approved that Mn2+ and Mg2+ ions are necessary for Pseudomonas taetrolens growth. The study results will help to improve the effectiveness of lactobionic acid production with Pseudomonas taetrolens NCIB 9396 and DSM 21104.

Keywords: lactobionic acid, lactose oxidation, Pseudomonas taetrolens, whey

Procedia PDF Downloads 157
3310 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate

Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han

Abstract:

The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.

Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties

Procedia PDF Downloads 404
3309 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite

Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis

Abstract:

A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.

Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid

Procedia PDF Downloads 212
3308 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima

Authors: Rajesh Chandra, Uttam K. Ghosh

Abstract:

This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.

Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid

Procedia PDF Downloads 158
3307 Characteristic Composition and Sensory Contributions of Acidic Aroma in Mainstream Cigarette Smoke of Cherry-Red Tobacco

Authors: Tian Yangyang, Xu Zihe, Lu Junping, Yang Jizhou, Xu Yiqun, Wang Jiansong, Chen Chao, Yang Mengmeng, Guo Jianhua, Mu Wenjun, Wang Guiyao, Xue Chaoqun, Liang Taibo, Hu Liwei

Abstract:

Cherry-red tobacco is receiving constant attention from cigarette enterprises because of its special flavor. This study aims to explore the material basis for the formation of the characteristic flavor of cherry-red tobacco and to clarify the distribution characteristics of the acidic aroma component groups in its mainstream smoke. In order to reach the aims of current study, this study employs GC/MS to examine the differences of distribution characteristics in particulate matter of mainstream cigarette smoke between cherry-red and common tobacco, meanwhile the aroma activity values (OVA) was used to compare the contribution of acidic aroma of cherry-red tobacco. The results showed that: 1) Isovaleric acid, acetic acid and butyric acid were the key acidic components in the mainstream smoke of the samples, followed by 3-methylvaleric acid, 4-methylvaleric acid and n-valeric acid. 2)Analysis of the release of these key sour fragrance components showed that the acidic aroma of "YUN 85" mainstream smoke was stronger than the leaf group, cherry-red tobacco was the weakest. In addition, aging had the effect of reducing the acidic components of cherry-red tobacco and the addition of cherry-red tobacco had little effect on the acidic components of the original leaf group. 3) For 14 acidic aroma(OAV>1) in smoke of cherry-red tobacco, 3-methylpentanoic acid, 4-methylpentanoic acid, pentanoic acid, and isovaleric acid were very prominent in contributing to acidic aroma, while pyruvic acid, 2-methylbutyric acid, hydrogenated acid, and propionic acid were less contribution.

Keywords: cherry-red tobacco, acidic aroma, GC/MS, mainstream cigarette smoke, odor activity value

Procedia PDF Downloads 138
3306 Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice

Authors: Juthamath Komvongsa, Bancha Mahong, Kannika Phasai, Sukanya Luang, Jong-Seong Jeon, James Ketudat-Cairns

Abstract:

Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice.

Keywords: fatty acid, fatty acid glucose ester, transglucosidase, rice flag leaf, homologous knockout lines, tandam mass spectrometry

Procedia PDF Downloads 368
3305 Optimization of Batch to Up-Scaling of Soy-Based Prepolymer Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

The chemical structure of soybean oils have to be chemically modified through its tryglyceride to attain resemblance properties with petrochemicals. Sulfur acid catalyst in peracetic acid co-reagent has good performance on modified soybean oil strucutures through its unsaturated fatty acid moiety to the desired hydroxyl functional groups. A series of screening reactions have indicated that the ratio of acetic/peroxide acid 1:7.25 (mol/mol) with temperature of 600°C for soy-epoxide synthesis are prevailed for up-scaling of bodied soybean into 10 and 20 folds from initials. A two-step process was conducted for the preparation of soy-polyol in designated temperatures.

Keywords: soybean, polyol, up-scaling, polyurethane

Procedia PDF Downloads 360
3304 Finding the Reaction Constant between Humic Acid and Aluminum Ion by Fluorescence Quenching Effect

Authors: Wen Po Cheng, Chen Zhao Feng, Ruey Fang Yu, Lin Jia Jun, Lin Ji Ye, Chen Yuan Wei

Abstract:

Humic acid was used as the removal target for evaluating the coagulation efficiency in this study. When the coagulant ions mix with a humic acid solution, a Fluorescence quenching effect may be observed conditionally. This effect can be described by Stern-Volmer linear equation which can be used for quantifying the quenching value (Kq) of the Fluorescence quenching effect. In addition, a Complex-Formation Titration (CFT) theory was conducted and the result was used to explain the electron-neutralization capability of the coagulant (AlCl₃) at different pH. The results indicated that when pH of the ACl₃ solution was between 6 and 8, fluorescence quenching effect obviously occurred. The maximum Kq value was found to be 102,524 at pH 6. It means that the higher the Kq value is, the better complex reaction between a humic acid and aluminum salts will be. Through the Kq value study, the optimum pH can be quantified when the humic acid solution is coagulated with aluminum ions.

Keywords: humic acid, fluorescence quenching effect, complex reaction, titration

Procedia PDF Downloads 578
3303 Ruminal Fermentation of Biologically Active Nitrate- and Nitro-Containing Forages

Authors: Robin Anderson, David Nisbet

Abstract:

Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are biologically active chemicals that can accumulate naturally in rangeland grasses forages consumed by grazing cattle, sheep and goats. While toxic to livestock if accumulations and amounts consumed are high enough, particularly in animals having no recent exposure to the forages, these chemicals are known to be potent inhibitors of methane-producing bacteria inhabiting the rumen. Consequently, there is interest in examining their potential use as anti-methanogenic compounds to decrease methane emissions by grazing ruminants. Presently, rumen microbes, collected freshly from a cannulated Holstein cow maintained on 50:50 corn based concentrate:alfalfa diet were mixed (10 mL fluid) in 18 x 150 mm crimp top tubes with 0.5 of high nitrate-containing barley (Hordeum vulgare; containing 272 µmol nitrate per g forage dry matter), and NPA- or NPOH- containing milkvetch forages (Astragalus canadensis and Astragalus miser containing 80 and 174 soluble µmol NPA or NPOH/g forage dry matter respectively). Incubations containing 0.5 g alfalfa (Medicago sativa) were used as controls. Tubes (3 per each respective forage) were capped and incubated anaerobically (using oxygen free carbon dioxide) for 24 h at 39oC after which time amounts of total gas produced were measured via volume displacement and headspace samples were analyzed by gas chromatography to determine concentrations of hydrogen and methane. Fluid samples were analyzed by gas chromatography to measure accumulations of fermentation acids. A completely randomized analysis of variance revealed that the nitrate-containing barley and both the NPA- and the NPOH-containing milkvetches significantly decreased methane production, by > 50%, when compared to methane produced by populations incubated similarly with alfalfa (70.4 ± 3.6 µmol/ml incubation fluid). Accumulations of hydrogen, which are typically increased when methane production is inhibited, by incubations with the nitrate-containing barley and the NPA- and NPOH-containing milkvetches did not differ from accumulations observed in the alfalfa controls (0.09 ± 0.04 µmol/mL incubation fluid). Accumulations of fermentation acids produced in the incubations containing the high-nitrate barley and the NPA- and NPOH-containing milkvetches likewise did not differ from accumulations observed in incubations containing alfalfa (123.5 ± 10.8, 36.0 ± 3.0, 17.1 ± 1.5, 3.5 ± 0.3, 2.3 ± 0.2, 2.2 ± 0.2 µmol/mL incubation fluid for acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate, respectively). This finding indicates the microbial populations did not compensate for the decreased methane production via compensatory changes in production of fermentative acids. Stoichiometric estimation of fermentation balance revealed that > 77% of reducing equivalents generated during fermentation of the forages were recovered in fermentation products and the recoveries did not differ between the alfalfa incubations and those with the high-nitrate barley or the NPA- or NPOH-containing milkvetches. Stoichiometric estimates of amounts of hexose fermented similarly did not differ between the nitrate-, NPA and NPOH-containing incubations and those with the alfalfa, averaging 99.6 ± 37.2 µmol hexose consumed/mL of incubation fluid. These results suggest that forages containing nitrate, NPA or NPOH may be useful to reduce methane emissions of grazing ruminants provided risks of toxicity can be effectively managed.

Keywords: nitrate, nitropropanol, nitropropionic acid, rumen methane emissions

Procedia PDF Downloads 130
3302 Evaluation of Esters Production by Oleic Acid Epoxidation Reaction

Authors: Flavio A. F. Da Ponte, Jackson Q. Malveira, Monica C. G. Albuquerque

Abstract:

In recent years a worldwide interest in renewable resources from the biomass has spurred the industry. In this work the chemical structure of oleic acid chains was modified by homogeneous and heterogeneous catalysis in order to produce esters. The homogeneous epoxidation was carried out at H2O2 to oleic acid unsaturation molar ratio of 20:1. The reaction temperature was 338 K and reaction time 16 h. Formic acid was used as catalyst. For heterogeneous catalysis reaction temperature was 343 K and reaction time 24 h. The esters production was carried out by heterogeneous catalysis of the epoxidized oleic acid and butanol using Mg/SBA-15 as catalyst. The resulting products were confirmed by NMR (1H and 13C) and FTIR spectroscopy. The products were characterized before and after each reaction. The catalysts were characterized by X-ray diffraction, X-ray fluorescence, thermogravimetric analysis (TGA) and BET surface areas. The results were satisfactory for the bioproducts formed.

Keywords: acid oleic, bioproduct, esters, epoxidation

Procedia PDF Downloads 356
3301 Synergistic Extraction Study of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform

Authors: F. Adjel, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm-3 TOPO in chloroform. From an synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, TOPO, synergism

Procedia PDF Downloads 525
3300 Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries

Authors: Malika Foudia, Larbi Zerroual

Abstract:

The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases.

Keywords: lead-acid battery, additives, positive plate, impedance (EIS).

Procedia PDF Downloads 418
3299 Synergistic Extraction of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Methyl Isobutyl Cétone in Chloroform

Authors: F. Adjel, C. Bensmail, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of methyl isobutyl cétone (MIBK) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of MIBK, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm^-3 MIBK in chloroform. From a synergistic extraction-equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(MIBK). The MIBK-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and MIBK is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, MIBK, synergism

Procedia PDF Downloads 495
3298 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 209
3297 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

Authors: U. A. Asli, H. Hamid, Z. A. Zakaria, A. N. Sadikin, R. Rasit

Abstract:

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4 % of sulphuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28 % ammonia solution. Then the EFB biomass was subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Keywords: bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars

Procedia PDF Downloads 618
3296 Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435

Authors: A. U. Adamu, Hamisu Abdu, A. A. Saidu

Abstract:

The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %.

Keywords: betulinic acid, glycosidation, novozyme-435, optimization

Procedia PDF Downloads 426
3295 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems: Chemical Tests

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: acid sulfuric, concrete, corrosion, biogenic

Procedia PDF Downloads 381
3294 The Potential of Ursolic Acid Acetate as an Agent for Malarial Chemotherapy

Authors: Mthokozisi B. C. Simelane

Abstract:

Despite the various efforts by governmental and non-governmental organizations aimed at eradicating the disease, malaria is said to kill a child every 30 seconds. Traditional healers use different concoctions prepared from medicinal plants to treat malaria. In the quest to bio-prospect plant-derived triterpenes for anti-malaria activity, we report here the in vivo antiplasmodial activity of ursolic acid acetate (ursolic acid isolated from dichloromethane extract of Mimusops caffra was chemically modified to its acetate derivative). The transdermal administration of ursolic acid acetate (UAA) dose dependently showed complete inhibition of the parasites’ growth at the highest concentration of 400 mg/kg after 15 days of Plasmodium berghei infection. UAA prevented the in vitro aggregation of MDH but did not prevent the expression of PfHsp 70 in E. coli XL1 blue cells. It, however, enhanced PfHsp70 ATPase activity with the specific activity of 65 units (amount of phosphate released 73.83 nmolPi/min.mg). Ursolic acid acetate prevented the formation of hemozoin (60 ± 0.02% at 6 mg/ml). The results suggest that Ursolic acid acetate possesses potential anti-malaria properties.

Keywords: Mimusops caffra, ursolic acid acetate, hemozoin, Malaria

Procedia PDF Downloads 426
3293 Characteristic Components in Cornusofficinalis to AGEs Injury Protective Effect and Mechanism of HUVEC

Authors: Yu-Han Tao, Hui-Qin Xu

Abstract:

The present study aimed to explain the protective effect of Cornus officinalis characteristic components, under AGEs damage to HUVEC. After cultured HUVEC adhered, Cornus officinalis characteristic components such as loganin, morroniside, oleanolic acid, ursolic acid and aminoguanidine (positive control dug) hatched, after 1h the AGEs (200 mg/L) were added. After 24h, LDH, SOD, MDA, NO, ET, and AngⅡ, TGF-β, IL-1β, ROS in the supernatant were determined. The results showed the Cornus officinalis characteristic compounds could improve vitality of SOD, NO, reduce the MDA, ET, AngⅡ, TGF-β, IL-1β, ROS significantly when compared with the model groug. Loganin, oleanic acid, ursolic acid, had significant protective effect on AGEs injured HUVEC. As a conclusion, characteristic components in Cornus officinalis had a positive effect after HUVEC injured by AGEs.

Keywords: Cornus officinalis, morroniside, oganin, oleanolic acid, ursolic acid

Procedia PDF Downloads 381
3292 Synergistic Extraction Study of Nickel (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform

Authors: F. Adjel, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of nickel ion from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of Tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is NiL2 and NiL2(HL). In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.00125 and 0.0025 mol dm^-3 TOPO in chloroform. From a synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation NiL2(TOPO) and NiL2(HL)(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of nickel (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, nickel(II), capric acid, TOPO, synergism

Procedia PDF Downloads 599
3291 Evaluation of the Mechanical and Microstructural Properties of Sustainable Concrete Exposed to Acid Solution

Authors: Adil Tamimi

Abstract:

Limestone powder is a natural material that is available in many parts of the world. In this research self-compacting concrete was designed and prepared using limestone powder. The resulted concrete was exposed to the hydrochloric acid solution and compared with reference concrete. Mechanical properties of both fresh and hardened concrete have been evaluated. Scanning Electron Microscopy “SEM” has been unitized to analyse the morphological development of the hydration products. In sulphuric acid solution, a large formation of gypsum was detected in both samples of self-compacting concrete and conventional concrete. The Higher amount of thaumasite and ettringite was also detected in the SCC sample. In hydrochloric acid solution, monochloroaluminate was detected.

Keywords: self-compacting concrete, mechanical properties, Scanning Electron Microscopy, acid solution

Procedia PDF Downloads 512