Search results for: gaseous nitriding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 207

Search results for: gaseous nitriding

177 Comparative Study of Impedance Parameters for 42CrMo4 Steel Nitrided and Exposed at Electrochemical Corrosion

Authors: M. H. Belahssen, S. Benramache

Abstract:

This paper presents corrosion behavior of alloy 42CrMo4 steel nitrided by plasma. Different samples nitrided were tested. The corrosion behavior was evaluated by electrochemical impedance spectroscopy and the tests were carried out in acid chloride solution 1M. The best corrosion protection was observed for nitrided samples. The aim of this work is to compare equivalents circuits corresponding to Nyquist curves simulated and experimental and select who gives best results of impedance parameters with lowest error.

Keywords: pasma nitriding, steel, alloy 42CrMo4, elecrochemistry, corrosion behavior

Procedia PDF Downloads 337
176 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 338
175 Study of Ambient Air Quality on Building's Roof of Dhaka City

Authors: Koninika Tanzim

Abstract:

The gaseous pollutants, SO2, NO2, CO and O3 affect the environment of Dhaka City. These pollutants are mainly released from stationary sources, like, fossil-fueled, power plants, industrial units and brickfields around the city. Suspended particulate matters including PM10 and PM2.5 are also contributing to air pollution in Dhaka City. SO2, NO2 and O3 are determined by using UV and visible spectrophotometry. The sensor type devised has been used for the determination of CO in ambient air. Lead in the suspended particulate matter was determined by using atomic absorption spectrometry. The samples were collected at ground level and on the roof of a seven-storied building. For all the criteria pollutants, the concentration at the roof was found to the lower than that at the ground level. The average concentration of PM10 and PM2.5 were found to the 241.5 and 81.1 mg/m3 at the ground level. On the roof of a 7 storied building was however 49.99 mg/m3 and 25.88 mg/m3 for PM10 and PM2.5 respectively. The concentration of Pb varied from 0.011 to 0.04 mg/m3 at the ground level. The values for Pb at the roof level were significantly lower. The values for SO2, NO2, CO and O3 were found to be higher than the USEPA values.

Keywords: gaseous air pollutant, PM, lead, gravimetry, spectrophotometry, atomic absorption, ambient air quality

Procedia PDF Downloads 390
174 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam

Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani

Abstract:

Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.

Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology

Procedia PDF Downloads 61
173 Nitriding of Super-Ferritic Stainless Steel by Plasma Immersion Ion Implantation in Radio Frequency and Microwave Plasma System

Authors: H. Bhuyan, S. Mändl, M. Favre, M. Cisternas, A. Henriquez, E. Wyndham, M. Walczak, D. Manova

Abstract:

The 470 Li-24 Cr and 460Li-21 Cr are two alloys belonging to the next generation of super-ferritic nickel free stainless steel grades, containing titanium (Ti), niobium (Nb) and small percentage of carbon (C) and nitrogen (N). The addition of Ti and Nb improves in general the corrosion resistance while the low interstitial content of C and N assures finer precipitates and greater ductility compared to conventional ferritic grades. These grades are considered an economic alternative to AISI 316L and 304 due to comparable or superior corrosion. However, since 316L and 304 can be nitrided to improve the mechanical surface properties like hardness and wear; it is hypothesize that the tribological properties of these super-ferritic stainless steels grades can also be improved by plasma nitriding. Thus two sets of plasma immersion ion implantation experiments have been carried out, one with a high pressure capacitively coupled radio frequency plasma at PUC Chile and the other using a low pressure microwave plasma at IOM Leipzig, in order to explore further improvements in the mechanical properties of 470 Li-24 Cr and 460Li-21 Cr steel. Nitrided and unnitrided substrates have been subsequently investigated using different surface characterization techniques including secondary ion mass spectroscopy, scanning electron microscopy, energy dispersive x-ray analysis, Vickers hardness, wear resistance, as well as corrosion test. In most of the characterizations no major differences have been observed for nitrided 470 Li-24 Cr and 460Li-21 Cr. Due to the ion bombardment, an increase in the surface roughness is observed for higher treatment temperature, independent of the steel types. The formation of chromium nitride compound takes place only at a treatment temperature around 4000C-4500C, or above. However, corrosion properties deteriorate after treatment at higher temperatures. The physical characterization results show up to 25 at.% of nitrogen for a diffusion zone of 4-6 m, and a 4-5 times increase in hardness for different experimental conditions. The samples implanted with temperature higher than 400 °C presented a wear resistance around two orders of magnitude higher than the untreated substrates. The hardness is apparently affected by the different roughness of the samples and their different profile of nitrogen.

Keywords: ion implantation, plasma, RF and microwave plasma, stainless steel

Procedia PDF Downloads 448
172 The Corrosion Resistance of the 32CrMoV13 Steel Nitriding

Authors: Okba Belahssen, Lazhar Torchane, Said Benramache, Abdelouahed Chala

Abstract:

This paper presents corrosion behavior of the plasma-nitrided 32CrMoV13 steel. Different kinds of samples were tested: non-treated, plasma nitrided samples. The structure of layers was determined by X-ray diffraction, while the morphology was observed by scanning electron microscopy (SEM). The corrosion behavior was evaluated by electrochemical techniques (potentiodynamic curves and electrochemical impedance spectroscopy). The corrosion tests were carried out in acid chloride solution (HCl 1M). Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localized corrosion through open porosity. The better corrosion protection was observed for nitrided sample.

Keywords: plasma-nitrided, 32CrMoV13 steel, corrosion, EIS

Procedia PDF Downloads 569
171 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 263
170 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis

Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks

Abstract:

Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.

Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol

Procedia PDF Downloads 504
169 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 289
168 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. Nitrogen gas has been used to obtain the inert condition and to carry the gaseous pyrolysis products. The pyrolysis transformed organic materials into gaseous components, small quantities of liquid, and a solid residue (coke) containing fixed amount of carbon and ash. The composition of gas which is produced from the pyrolysis is carbon monoxide, hydrogen, methane, and other hydrocarbon compounds. The gas was condensed and the liquid containing oil/tar and water was obtained. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: coal tar, pyrolysis, gas chromatography-mass spectroscopy

Procedia PDF Downloads 307
167 Electronic Equipment Failure due to Corrosion

Authors: Yousaf Tariq

Abstract:

There are many reasons which are involved in electronic equipment failure i.e. temperature, humidity, dust, smoke etc. Corrosive gases are also one of the factor which may involve in failure of equipment. Sensitivity of electronic equipment increased when “lead-free” regulation enforced on manufacturers. In data center, equipment like hard disk, servers, printed circuit boards etc. have been exposed to gaseous contamination due to increase in sensitivity. There is a worldwide standard to protect electronic industrial electronic from corrosive gases. It is well known as “ANSI/ISA S71.04 – 1985 - Environmental Conditions for Control Systems: Airborne Contaminants. ASHRAE Technical Committee (TC) 9.9 members also recommended ISA standard in their whitepaper on Gaseous and Particulate Contamination Guideline for data centers. TC 9.9 members represented some of the major IT equipment manufacturers e.g. IBM, HP, Cisco etc. As per standard practices, first step is to monitor air quality in data center. If contamination level shows more than G1, it means that gas-phase air filtration is required other than dust/smoke air filtration. It is important that outside fresh air entering in data center should have pressurization/re-circulated process in order to absorb corrosive gases and to maintain level within specified limit. It is also important that air quality monitoring should be conducted once in a year. Temperature and humidity should also be monitored as per standard practices to maintain level within specified limit.

Keywords: corrosive gases, corrosion, electronic equipment failure, ASHRAE, hard disk

Procedia PDF Downloads 310
166 Spatio-Temporal Variation of Gaseous Pollutants and the Contribution of Particulate Matters in Chao Phraya River Basin, Thailand

Authors: Samart Porncharoen, Nisa Pakvilai

Abstract:

The elevated levels of air pollutants in regional atmospheric environments is a significant problem that affects human health in Thailand, particularly in the Chao Phraya River Basin. Of concern are issues surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the river. Therefore, the spatio-temporal study of air pollution in this real environment can gain more accurate air quality data for making formalized environmental policy in river basins. In order to inform such a policy, a study was conducted over a period of January –December, 2015 to continually collect measurements of various pollutants in both urban and regional locations in the Chao Phraya River Basin. This study investigated the air pollutants in many diverse environments along the Chao Phraya River Basin, Thailand in 2015. Multivariate Analysis Techniques such as Principle Component Analysis (PCA) and Path analysis were utilised to classify air pollution in the surveyed location. Measurements were collected in both urban and rural areas to see if significant differences existed between the two locations in terms of air pollution levels. The meteorological parameters of various particulates were collected continually from a Thai pollution control department monitoring station over a period of January –December, 2015. Of interest to this study were the readings of SO2, CO, NOx, O3, and PM10. Results showed a daily arithmetic mean concentration of SO2, CO, NOx, O3, PM10 reading at 3±1 ppb, 0.5± 0.5 ppm, 30±21 ppb, 19±16 ppb, and 40±20 ug/m3 in urban locations (Bangkok). During the same time period, the readings for the same measurements in rural areas, Ayutthaya (were 1±0.5 ppb, 0.1± 0.05 ppm, 25±17 ppb, 30±21 ppb, and 35±10 ug/m3respectively. This show that Bangkok were located in highly polluted environments that are dominated source emitted from vehicles. Further, results were analysed to ascertain if significant seasonal variation existed in the measurements. It was found that levels of both gaseous pollutants and particle matter in dry season were higher than the wet season. More broadly, the results show that levels of pollutants were measured highest in locations along the Chao Phraya. River Basin known to have a large number of vehicles and biomass burning. This correlation suggests that the principle pollutants were from these anthropogenic sources. This study contributes to the body of knowledge surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the Chao Phraya River Basin. Further, this study is one of the first to utilise continuous mobile monitoring along a river in order to gain accurate measurements during a data collection period. Overall, the results of this study can be used for making formalized environmental policy in river basins in order to reduce the physical effects on human health.

Keywords: air pollution, Chao Phraya river basin, meteorology, seasonal variation, principal component analysis

Procedia PDF Downloads 265
165 Potentiality of Biohythane Process for the Gaseous Energy Recovery from Organic Wastes

Authors: Debabrata Das, Preeti Mishra

Abstract:

A two-phase anaerobic process combining biohydrogen followed by biomethane (biohythane technology) serves as an environment-friendly and economically sustainable approach for the improved valorization of organic wastes. Suitability of the pure cultures like Klebsiela pneumonia, C. freundii, B. coagulan, etc. and mixed acidogenic cultures for the biohydrogen production was already studied. The characteristics of organic wastes play a critical role in biohydrogen production. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. Suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers’ dried grain with soluble (DDGS) and algal biomass (AB) as a co-substrate were studied for a biohythane production. Results show that maximum gaseous energy of 20.7, 9.3, 16.7 and 15.6 % was recovered using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB in terms of hythane production, respectively. The maximum cumulative hydrogen and methane production of 150 and 64 mmol/L were achieved using GDOC. Further, 98 % reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure.

Keywords: Biohythane, algal biomass, distillers’ dried grain with soluble (DDGS), groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC)

Procedia PDF Downloads 178
164 Preparation and Characterization of Titania-Coated Glass Fibrous Filters Using Aqueous Peroxotitanium Acid Solution

Authors: Ueda Honoka, Yasuo Hasegawa, Fumihiro Nishimura, Jae-Ho Kim, Susumu Yonezawa

Abstract:

Aqueous peroxotitanium acid solution prepared from the TiO₂ fluorinated by F₂ gas was used for the TiO₂ coating on glass fibrous filters in this study. The coating of TiO₂ on the surface of glass fibers was carried out at 120℃ and for 15 min ~ 24 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer was largely dependent on the reaction time, as shown in the results of scanning electron microscopy and energy dispersive X-ray spectroscopy. Increasing the reaction times, the TiO₂ layer on the glass expanded uniformly. Moreover, the surface fluorination of glass fibers can promote the formation of the TiO₂ layer on the surface. The photocatalytic activity of prepared titania-coated glass fibrous filters was investigated by both the degradation test of methylene blue (MB) and the decomposition test of gaseous acetaldehyde. The MB decomposition ratio with fluorinated samples was about 95% for 30 min of UV irradiation time, and it was much higher than that (70%) with the untreated thing. The decomposition ratio (50%) of gaseous acetaldehyde with fluorinated samples was also higher than that (30%) with the untreated thing. Consequently, photocatalytic activity is enhanced by surface fluorination.

Keywords: aqueous peroxotitanium acid solution, titania-coated glass fibrous filters, photocatalytic activity, surface fluorination

Procedia PDF Downloads 69
163 Solution Growth of Titanium Nitride Nanowires for Implantation Application

Authors: Roaa Sait, Richard Cross

Abstract:

The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters.

Keywords: nanowires, dissolution-growth, nucleation, PECVD, deposition, spin coating, scanning electron microscopic analysis, cyclic voltammetry analysis

Procedia PDF Downloads 337
162 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere

Authors: Moustafa Osman Mohammed

Abstract:

This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.

Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment

Procedia PDF Downloads 298
161 Characterization of Fine Particles Emitted by the Inland and Maritime Shipping

Authors: Malika Souada, Juanita Rausch, Benjamin Guinot, Christine Bugajny

Abstract:

The increase of global commerce and tourism makes the shipping sector an important contributor of atmospheric pollution. Both, airborne particles and gaseous pollutants have negative impact on health and climate. This is especially the case in port cities, due to the proximity of the exposed population to the shipping emissions in addition to other multiple sources of pollution linked to the surrounding urban activity. The objective of this study is to determine the concentrations of fine particles (immission), specifically PM2.5, PM1, PM0.3, BC and sulphates, in a context where maritime passenger traffic plays an important role (port area of Bordeaux centre). The methodology is based on high temporal resolution measurements of pollutants, correlated with meteorological and ship movements data. Particles and gaseous pollutants from seven maritime passenger ships were sampled and analysed during the docking, manoeuvring and berthing phases. The particle mass measurements were supplemented by measurements of the number concentration of ultrafine particles (<300 nm diameter). The different measurement points were chosen by taking into account the local meteorological conditions and by pre-modelling the dispersion of the smoke plumes. The results of the measurement campaign carried out during the summer of 2021 in the port of Bordeaux show that the detection of concentrations of particles emitted by ships proved to be punctual and stealthy. Punctual peaks of ultrafine particle concentration in number (P#/m3) and BC (ng/m3) were measured during the docking phases of the ships, but the concentrations returned to their background level within minutes. However, it appears that the influence of the docking phases does not significantly affect the air quality of Bordeaux centre in terms of mass concentration. Additionally, no clear differences in PM2.5 concentrations between the periods with and without ships at berth were observed. The urban background pollution seems to be mainly dominated by exhaust and non-exhaust road traffic emissions. However, temporal high-resolution measurements suggest a probable emission of gaseous precursors responsible for the formation of secondary aerosols related to the ship activities. This was evidenced by the high values of the PM1/BC and PN/BC ratios, tracers of non-primary particle formation, during periods of ship berthing vs. periods without ships at berth. The research findings from this study provide robust support for port area air quality assessment and source apportionment.

Keywords: characterization, fine particulate matter, harbour air quality, shipping impacts

Procedia PDF Downloads 82
160 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 249
159 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip

Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri

Abstract:

We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.

Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP

Procedia PDF Downloads 116
158 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 458
157 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 129
156 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.

Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components

Procedia PDF Downloads 592
155 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 138
154 Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel

Authors: Vikas Chawla, Buta Singh Sidhu, Amita Rani, Amit Handa

Abstract:

The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work.

Keywords: nanostructure, physical vapour deposition, oxides, thin films, electron microscopy

Procedia PDF Downloads 123
153 Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains

Authors: Reema Tiwari, U. C. Kulshrestha

Abstract:

As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions.

Keywords: diurnal ratios, gas-aerosol interactions, spatial gradient, thermodynamic equilibrium

Procedia PDF Downloads 111
152 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 376
151 Tectonic Movements and Ecosystems

Authors: Arvind Kumar Trivedi

Abstract:

Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’.

Keywords: tectonic movements, ecosystems, plate tectonics, impact

Procedia PDF Downloads 22
150 Efficient Utilization of Biomass for Bioenergy in Environmental Control

Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu

Abstract:

The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.

Keywords: bioenergy, biomass conversion, biorefining, efficient utilisation of night soil

Procedia PDF Downloads 386
149 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.

Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain

Procedia PDF Downloads 177
148 Numerical Simulation and Optimal Control in Gas Dynamic Laser GDLs

Authors: Laggoun Chouki

Abstract:

In this paper we present the design and mechanisms of the physics process and discuss the performances of continuous gas laser dynamics, based on molecules N2(v=1)→C02(001)(v=3). The main objectives of work in this area are, obtaining the high laser energies in short time durations needed for the feasibility studies the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using gaseous media. The process generating the wave excited, on the basis of the excited level vibration, Theoretical predictions are compared with experimental results. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation.

Keywords: modelling, lasers, gas, numerical, nozzle

Procedia PDF Downloads 56