Search results for: function analysis system technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 45563

Search results for: function analysis system technique

45533 Analytical Design of Fractional-Order PI Controller for Decoupling Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system

Procedia PDF Downloads 333
45532 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: single agent control, multi-agent system, transfer function, graph angle

Procedia PDF Downloads 452
45531 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction

Procedia PDF Downloads 146
45530 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details

Authors: Wentao He, Jingxi Liu, De Xie

Abstract:

It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.

Keywords: crack path, fatigue crack, fatigue live, FCG-system, virtual crack closure technique

Procedia PDF Downloads 568
45529 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity

Authors: M. O. Durojaye, J. T. Agee

Abstract:

This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.

Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines

Procedia PDF Downloads 323
45528 Tracking Maximum Power Point Utilizing Artificial Immunity System

Authors: Marwa Ahmed Abd El Hamied

Abstract:

In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.

Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods

Procedia PDF Downloads 427
45527 Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution

Authors: V. V. Singh

Abstract:

In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed.

Keywords: star topology, bus topology, hacking, blocking, linux operating system, Gumbel-Hougaard family copula, supplementary variable

Procedia PDF Downloads 577
45526 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance

Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang

Abstract:

A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.

Keywords: beta function, compressor map, interpolation error, map optimization tool

Procedia PDF Downloads 268
45525 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values

Procedia PDF Downloads 592
45524 Energy Management System

Authors: S. Periyadharshini, K. Ramkumar, S. Jayalalitha, M. GuruPrasath, R. Manikandan

Abstract:

This paper presents a formulation and solution for industrial load management and product grade problem. The formulation is created using linear programming technique thereby optimizing the electricity cost by scheduling the loads satisfying the process, storage, time zone and production constraints which will create an impact of reducing maximum demand and thereby reducing the electricity cost. Product grade problem is formulated using integer linear programming technique of optimization using lingo software and the results show that overall increase in profit margin. In this paper, time of use tariff is utilized and this technique will provide significant reductions in peak electricity consumption.

Keywords: cement industries, integer programming, optimal formulation, objective function, constraints

Procedia PDF Downloads 593
45523 Investigation of Complexity Dynamics in a DC Glow Discharge Magnetized Plasma Using Recurrence Quantification Analysis

Authors: Vramori Mitra, Bornali Sarma, Arun K. Sarma

Abstract:

Recurrence is a ubiquitous feature of any real dynamical system. The states in phase space trajectory of a system have an inherent tendency to return to the same state or its close state after certain time laps. Recurrence quantification analysis technique, based on this fundamental feature of a dynamical system, detects evaluation of state under variation of control parameter of the system. The paper presents the investigation of nonlinear dynamical behavior of plasma floating potential fluctuations obtained by using a Langmuir probe in different magnetic field under the variation of discharge voltages. The main measures of recurrence quantification analysis are considered as determinism, linemax and entropy. The increment of the DET and linemax variables asserts that the predictability and periodicity of the system is increasing. The variable linemax indicates that the chaoticity is being diminished with the slump of magnetic field while increase of magnetic field enhancing the chaotic behavior. Fractal property of the plasma time series estimated by DFA technique (Detrended fluctuation analysis) reflects that long-range correlation of plasma fluctuations is decreasing while fractal dimension is increasing with the enhancement of magnetic field which corroborates the RQA analysis.

Keywords: detrended fluctuation analysis, chaos, phase space, recurrence

Procedia PDF Downloads 328
45522 Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment

Authors: Artem A. Krylov

Abstract:

Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).

Keywords: accelerogram synthesis, empirical Green's function, marine seismology, microearthquakes

Procedia PDF Downloads 325
45521 Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems

Authors: Debjani Chakraborty, Abhijit Chatterjee, Aishwaryaprajna

Abstract:

Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem.

Keywords: geometric programming problem, multivariate optimisation technique, posynomial, spatial interpolation

Procedia PDF Downloads 372
45520 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 122
45519 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 292
45518 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
45517 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 118
45516 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: customer voice, engineering parameters, gear pump, QFD

Procedia PDF Downloads 249
45515 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir

Abstract:

Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.

Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid

Procedia PDF Downloads 587
45514 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 360
45513 Geometric Design to Improve the Temperature

Authors: H. Ghodbane, A. A. Taleb, O. Kraa

Abstract:

This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.

Keywords: optimization, modeling, geometric design system, temperature increase

Procedia PDF Downloads 530
45512 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter

Authors: Mengmeng Liu, J. David Frost

Abstract:

Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.

Keywords: connectivity, interstate highway system, network analysis, resilience analysis

Procedia PDF Downloads 263
45511 System Identification and Controller Design for a DC Electrical Motor

Authors: Armel Asongu Nkembi, Ahmad Fawad

Abstract:

The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.

Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols

Procedia PDF Downloads 60
45510 Optimizing the Public Policy Information System under the Environment of E-Government

Authors: Qian Zaijian

Abstract:

E-government is one of the hot issues in the current academic research of public policy and management. As the organic integration of information and communication technology (ICT) and public administration, e-government is one of the most important areas in contemporary information society. Policy information system is a basic subsystem of public policy system, its operation affects the overall effect of the policy process or even exerts a direct impact on the operation of a public policy and its success or failure. The basic principle of its operation is information collection, processing, analysis and release for a specific purpose. The function of E-government for public policy information system lies in the promotion of public access to the policy information resources, information transmission through e-participation, e-consultation in the process of policy analysis and processing of information and electronic services in policy information stored, to promote the optimization of policy information systems. However, due to many factors, the function of e-government to promote policy information system optimization has its practical limits. In the building of E-government in our country, we should take such path as adhering to the principle of freedom of information, eliminating the information divide (gap), expanding e-consultation, breaking down information silos and other major path, so as to promote the optimization of public policy information systems.

Keywords: China, e-consultation, e-democracy, e-government, e-participation, ICTs, public policy information systems

Procedia PDF Downloads 867
45509 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 436
45508 The Development of the Website Learning the Local Wisdom in Phra Nakhon Si Ayutthaya Province

Authors: Bunthida Chunngam, Thanyanan Worasesthaphong

Abstract:

This research had objective to develop of the website learning the local wisdom in Phra Nakhon Si Ayutthaya province and studied satisfaction of system user. This research sample was multistage sample for 100 questionnaires, analyzed data to calculated reliability value with Cronbach’s alpha coefficient method α=0.82. This system had 3 functions which were system using, system feather evaluation and system accuracy evaluation which the statistics used for data analysis was descriptive statistics to explain sample feature so these statistics were frequency, percentage, mean and standard deviation. This data analysis result found that the system using performance quality had good level satisfaction (4.44 mean), system feather function analysis had good level satisfaction (4.11 mean) and system accuracy had good level satisfaction (3.74 mean).

Keywords: website, learning, local wisdom, Phra Nakhon Si Ayutthaya province

Procedia PDF Downloads 122
45507 Axle Load Estimation of Moving Vehicles Using BWIM Technique

Authors: Changgil Lee, Seunghee Park

Abstract:

Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.

Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation

Procedia PDF Downloads 294
45506 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 379
45505 Design of a Virtual Reality System for Children with Developmental Coordination Disorder

Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng

Abstract:

Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.

Keywords: virtual reality, virtual reality system, developmental coordination disorder, children

Procedia PDF Downloads 116
45504 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform

Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar

Abstract:

It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.

Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)

Procedia PDF Downloads 581