Search results for: fiber Bragg grating
1303 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors
Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis
Abstract:
A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation
Procedia PDF Downloads 2501302 Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls
Authors: Soon Ok Jo, Han Kyu Jeung, Si Woo Park
Abstract:
With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed.Keywords: carbon fiber, tow spreading fiber, pre-preg, roll structure
Procedia PDF Downloads 3491301 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating
Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze
Abstract:
A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating
Procedia PDF Downloads 4321300 Characteristics of PET-Based Conductive Fiber
Authors: Chung-Yang Chuang, Chi-Lung Chen, Hui-Min Wang, Chang-Jung Chang
Abstract:
Conductive fiber is the key material for e-textiles and wearable devices. However, the durability of the conductive fiber after the wash process is an important issue for conductive fiber applications in e-textiles. Therefore, it is necessary for conductive fiber with good performance on electrically conductive behavior during the product life cycle. In this research, the PET-based conductive fiber was prepared by silver conductive ink continuous coating. The conductive fiber showed low fiber resistance (10-¹~10Ω/cm), and the conductive behavior still had good performance (fiber resistance:10-¹~10Ω/cm, percentage of fiber resistance change:<60%) after the water wash durability test (AATCC-135, 30 times). This research provides a better solution to resolve the issues of resistance increase after the water wash process due to the damage to the conductive fiber structure.Keywords: PET, conductive fiber, e-textiles, wearable devices
Procedia PDF Downloads 1011299 Processing Methods for Increasing the Yield, Nutritional Value and Stability of Coconut Milk
Authors: Archana G. Lamdande, Shyam R. Garud, K. S. M. S. Raghavarao
Abstract:
Coconut has two edible parts, that is, a white kernel (solid endosperm) and coconut water (liquid endosperm). The white kernel is generally used in fresh or dried form for culinary purposes. Coconut testa, is the brown skin, covering the coconut kernel. It is removed by paring of wet coconut and obtained as a by-product in coconut processing industries during the production of products such as desiccated coconut, coconut milk, whole coconut milk powder and virgin coconut oil. At present, it is used as animal feed component after drying and recovering the residual oil (by expelling). Experiments were carried out on expelling of coconut milk for shredded coconut with and without testa removal, in order to explore the possibility of increasing the milk yield and value addition in terms of increased polyphenol content. The color characteristics of coconut milk obtained from the grating without removal of testa were observed to be L* 82.79, a* 0.0125, b* 6.245, while that obtained from grating with removal of testa were L* 83.24, a* -0.7925, b* 3.1. A significant increase was observed in total phenol content of coconut milk obtained from the grating with testa (833.8 µl/ml) when compared to that from without testa (521.3 µl/ml). However, significant difference was not observed in protein content of coconut milk obtained from the grating with and without testa (4.9 and 5.0% w/w, respectively). Coconut milk obtained from grating without removal of testa showed higher milk yield (62% w/w) when compared to that obtained from grating with removal of testa (60% w/w). The fat content in coconut milk was observed to be 32% (w/w), and it is unstable due to such a high fat content. Therefore, several experiments were carried out for examining its stability by adjusting the fat content at different levels (32, 28, 24, and 20% w/w). It was found that the coconut milk was more stable with a fat content of 24 % (w/w). Homogenization and ultrasonication and their combinations were used for exploring the possibility of increasing the stability of coconut milk. The microscopic study was carried out for analyzing the size of fat globules and the degree of their uniform distribution.Keywords: coconut milk, homogenization, stability, testa, ultrasonication
Procedia PDF Downloads 3141298 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature
Authors: T. Nishido, S. Fukumoto
Abstract:
The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.Keywords: bridge bearing, concrete slab, FBG sensor, health monitoring
Procedia PDF Downloads 2211297 A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber according to Longitudinal Shape Change
Authors: Sung-yong Choi, Woo-tai Jung, Young-hwan Park
Abstract:
This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber.Keywords: Bond, Polypropylene, fiber reinforcement, macro fiber, shape change
Procedia PDF Downloads 4621296 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method
Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva
Abstract:
In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method
Procedia PDF Downloads 1141295 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect
Authors: Minas Balyan
Abstract:
In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves
Procedia PDF Downloads 4061294 Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites
Authors: Varun Mittal, Shishir Sinha
Abstract:
The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites.Keywords: bagasse fiber, composite, hardness, sodium hydroxide
Procedia PDF Downloads 2861293 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Ahmed Bakry, Moustafa Ahmed
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.Keywords: bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser
Procedia PDF Downloads 6411292 Characteristics of Photoluminescence in Resonant Quasiperiodic Double-period Quantum Wells
Authors: C. H. Chang, R. Z. Qiu, C. W. Tsao, Y. H. Cheng, C. H. Chen, W. J. Hsueh
Abstract:
Characteristics of photoluminescence (PL) in a resonant quasi-periodic double-period quantum wells (DPQW) are demonstrated. The maximum PL intensity in the DPQW is remarkably greater than that in a traditional periodic QW (PQW) under the Bragg or anti-Bragg conditions. The optimal PL spectrum in the DPQW has an asymmetrical form instead of the symmetrical form in the PQW. Moreover, there are two large values of PL intensity in the DPQW, which also differs from the PQW.Keywords: Photoluminescence, quantum wells, quasiperiodic structure
Procedia PDF Downloads 7191291 Compressive Strength of Synthetic Fiber Reinforced Concretes
Authors: Soner Guler, Demet Yavuz, Fuat Korkut
Abstract:
Synthetic fibers are commonly used in many civil engineering applications because of its some superior characteristics such as non-corrosive and cheapness. This study presents the results of experimental study on compressive strength of synthetic fiber reinforced concretes. Two types of polyamide (PA) synthetic fiber with the length of 12 and 54 mm are used for this study. The fiber volume ratio is kept as 0.25%, 0.75%, and 0.75% in all mixes. The plain concrete compressive strength is 36.2 MPa. The test results clearly show that the increase in compressive strength for synthetic fiber reinforced concretes is significant. The greatest increase in compressive strength is 23% for PA synthetic fiber reinforced concretes with 0.75% fiber volume.Keywords: synthetic fibers, polyamide fibers, fiber volume, compressive strength
Procedia PDF Downloads 5271290 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser
Authors: Ishraq M. Anjum
Abstract:
Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser
Procedia PDF Downloads 1821289 Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials
Authors: Ahmed Fathi Mohamed, Nasir Shafiq, Muhd Fadhil Nuruddin, Ali Elheber Ahmed
Abstract:
Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix.Keywords: self-compacting concrete, silica fume, steel fiber, fresh taste
Procedia PDF Downloads 5741288 Characterization of the Physical Properties of Sheep Wool Fiber in Amhara National Regional State
Authors: Erkihun Zelalem
Abstract:
Ethiopian’s sheep population, estimated to be 25.5 million heads, is found widely distributed across the diverse agro-ecological zones of the country. In the past, there were many projects that done to improve production of meat, milk and productivity of sheep breed. However, no significance research has been done so far on production of wool fiber in Ethiopia which could be taken as a potential fiber next to cotton. The measurement of the sheep wool fiber physical properties is critically important, technical, commercial and certification point of view. A total of 24 sheep from different breeds (Menz, Tikur, Farta and Washera) were used in this study. Samples of fiber were analyzed using standard measurements for wool fiber length (WFL), mean fiber diameter (MFD), coefficient of variation of wool fiber diameter (FDCV), breaking strength, elongation, crimp, cleanness and moisture content. Based on the result all parameters shows that there is a great potential of getting of wool fiber from the skin of sheep and according to the standards of its property and grading system based on wool fiber fineness is medium to course. These types of fibers can be making carpets, blankets, rugs, coverings and other products.Keywords: Fiber, Fineness, Carpet, Fleece, Raw Wool
Procedia PDF Downloads 1641287 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite
Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun
Abstract:
In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.Keywords: fiber treatment, impact modifier, natural fibers, ultrasound
Procedia PDF Downloads 4901286 Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser
Authors: Liang Zhang, Yuanfu Lu, Yuming Dong, Guohua Jiao, Wei Chen, Jiancheng Lv
Abstract:
We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost.Keywords: fiber sensing, interferometric demodulation, mode-locked fiber laser, vernier effect
Procedia PDF Downloads 3291285 Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition
Authors: Shan Faiz, Arfat Anis, Saeed M. Al-Zarani
Abstract:
High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites.Keywords: PBI fiber, high density polyethylene, composites, melt blending
Procedia PDF Downloads 3651284 A Comparative Study on Indian and Greek Cotton Fiber Properties Correlations
Authors: Md. Nakib Ul Hasan, Md. Ariful Islam, Md. Sumon Miah, Misbah Ul Hoque, Bulbul Ahmed
Abstract:
The variability of cotton fiber characteristics has always been influenced by origin, weather conditions, method of culturing, and harvesting. Spinners work tirelessly to ensure consistent yarn quality by using the different origins of fibers to maximizes the profit margin. Spinners often fail to select desired raw materials of various origins to achieve an appropriate mixing plan due to the lack of knowledge on the interrelationship among fiber properties. The purpose of this research is to investigate the correlations among dominating fiber properties such as micronaire, strength, breaking elongation, upper half mean length, length uniformity index, short fiber index, maturity, reflectance, and yellowness. For this purpose, fiber samples from 500 Indian cotton bales and 350 Greek cotton bales were collected and tested using the high volume instrument (HVI). The fiber properties dataset was then compiled and analyzed using python 3.7 to determine the correlations matrix. Results show that Indian cotton fiber have highest correlation between strength-mat = 0.84, followed by SFI-Unf =-0.83, and Neps-Unf = -0.72. Greek cotton fiber, in contrast, have highest correlation between SFI-Unf =-0.98, followed by SFI-Mat = 0.89, +b-Len = 0.84, and Str-Mat = 0.74. Overall, the Greek cotton fiber showed a higher correlational matrix than compared to that of Indian cotton fiber.Keywords: cotton fiber, fiber properties correlation, Greek cotton, HVI, Indian cotton, spinning
Procedia PDF Downloads 1631283 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation
Authors: Y. C. Ching, K. H. Chong
Abstract:
The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.Keywords: kenaf fiber, polyester, tensile, thermal stability
Procedia PDF Downloads 3581282 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles
Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering
Abstract:
Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is combined with a proportion of glass fiber, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled without sizing agent was identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.Keywords: electrostatic charging, hybrid fiber composites, recycling, short fiber composites
Procedia PDF Downloads 1281281 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite
Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan
Abstract:
This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material
Procedia PDF Downloads 4211280 Overview of Fiber Optic Gyroscopes
Authors: M. Abdo, Ahmed Elghandour, Khairy Eltahlawy, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros—fiber optic gyroscopes and ring laser gyroscopes—and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric fiber optic gyros, resonator fiber optic gyros
Procedia PDF Downloads 851279 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis
Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs
Abstract:
This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis
Procedia PDF Downloads 1561278 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.Keywords: 3D printed, carbon fiber, fiber content, recycling
Procedia PDF Downloads 1901277 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin
Authors: F. Siahmed, A. Lounis, L. Faghi
Abstract:
The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin
Procedia PDF Downloads 4471276 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them
Authors: M. Abdo, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros
Procedia PDF Downloads 801275 Preparation of Conductive Composite Fiber by the Reduction of Silver Particles onto Hydrolyzed Polyacrylonitrile Fiber
Authors: Z. Okay, M. Kalkan Erdoğan, M. Şahin, M. Saçak
Abstract:
Polyacrylonitrile (PAN) is one of the most common and cheap fiber-forming polymers because of its high strength and high abrasion resistance properties. The result of alkaline hydrolysis of PAN fiber could be formed the products with conjugated sequences of –C=N–, acrylamide, sodium acrylate, and amidine. In this study, PAN fiber was hydrolyzed in a solution of sodium hydroxide, and this hydrolyzed PAN (HPAN) fiber was used to prepare conductive composite fiber by silver particles. The electrically conductive PAN fiber has the usage potential to produce variety of materials such as antistatic materials, life jackets and static charge reducing products. We monitored the change in the weight loss values of the PAN fiber with hydrolysis time. It was observed that a 60 % of weight loss was obtained in the fiber weight after 7h hydrolysis under the investigated conditions, but the fiber lost its fibrous structure. The hydrolysis time of 5h was found to be suitable in terms of preserving its fibrous structure. The change in the conductivity values of the composite with the preparation conditions such as hydrolysis time, silver ion concentration was studied. PAN fibers with different degrees of hydrolysis were treated with aqueous solutions containing different concentrations of silver ions by continuous stirring at 20 oC for 30 min, and the composite having the maximum conductivity of 2 S/cm could be prepared. The antibacterial property of the conductive HPAN fibers participated silver was also investigated. While the hydrolysis of the PAN fiber was characterized with FTIR and SEM techniques, the silver reduction process of the HPAN fiber was investigated with SEM and TGA-DTA techniques. The SEM micrographs showed that the surface of HPAN fiber was rougher and much more corroded than that of the PAN fiber. Composite, Conducting polymer, Fiber, Polyacrylonitrile.Keywords: composite, conducting polymer, fiber, polyacrylonitrile
Procedia PDF Downloads 4781274 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations
Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu
Abstract:
Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated
Procedia PDF Downloads 370