Search results for: bifurcation theory
4753 Bifurcation and Chaos of the Memristor Circuit
Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi
Abstract:
In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.Keywords: memristor, chaotic circuit, dynamical behavior, chaotic system
Procedia PDF Downloads 5054752 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms
Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz
Abstract:
Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery
Procedia PDF Downloads 3684751 Population Dynamics in Aquatic Environments: Spatial Heterogeneity and Optimal Harvesting
Authors: Sarita Kumari, Ranjit Kumar Upadhyay
Abstract:
This paper deals with plankton-fish dynamics where the fish population is growing logistically and nonlinearly harvested. The interaction between phytoplankton and zooplankton population is considered to be Crowley-Martin type functional response. It has been assumed that phytoplankton grows logistically and is affected by a space-dependent growth rate. Conditions for the existence of a positive equilibrium point and their stability analysis (both local and global) have been discussed for the non-spatial system. We have discussed maximum sustainable yields as well as optimal harvesting policy for maximizing the economic gain. The stability and existence of Hopf –bifurcation analysis have been discussed for the spatial system. Different conditions for turning pattern formation have been established through diffusion-driven instability analysis. Numerical simulations have been carried out for both non-spatial and spatial models. Phase plane analysis, the largest Lyapunov exponent, and bifurcation theory are used to numerically analyzed the non-spatial system. Our study shows that spatial heterogeneity, the mortality rate of phytoplankton, and constant harvesting of the fish population each play an important role in the dynamical behavior of the marine system.Keywords: optimal harvesting, pattern formation, spatial heterogeneity, Crowley-Martin functional response
Procedia PDF Downloads 1754750 Diffusion Dynamics of Leech-Heart Inter-Neuron Model
Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay
Abstract:
We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis
Procedia PDF Downloads 2254749 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 3264748 Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters
Authors: Ammar Nimer Natsheh
Abstract:
Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control
Procedia PDF Downloads 4394747 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model
Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng
Abstract:
The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation
Procedia PDF Downloads 2484746 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 2934745 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings
Authors: Amira Amamou, Mnaouar Chouchane
Abstract:
This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations
Procedia PDF Downloads 4104744 Non Linear Stability of Non Newtonian Thin Liquid Film Flowing down an Incline
Authors: Lamia Bourdache, Amar Djema
Abstract:
The effect of non-Newtonian property (power law index n) on traveling waves of thin layer of power law fluid flowing over an inclined plane is investigated. For this, a simplified second-order two-equation model (SM) is used. The complete model is second-order four-equation (CM). It is derived by combining the weighted residual integral method and the lubrication theory. This is due to the fact that at the beginning of the instability waves, a very small number of waves is observed. Using a suitable set of test functions, second order terms are eliminated from the calculus so that the model is still accurate to the second order approximation. Linear, spatial, and temporal stabilities are studied. For travelling waves, a particular type of wave form that is steady in a moving frame, i.e., that travels at a constant celerity without changing its shape is studied. This type of solutions which are characterized by their celerity exists under suitable conditions, when the widening due to dispersion is balanced exactly by the narrowing effect due to the nonlinearity. Changing the parameter of celerity in some range allows exploring the entire spectrum of asymptotic behavior of these traveling waves. The (SM) model is converted into a three dimensional dynamical system. The result is that the model exhibits bifurcation scenarios such as heteroclinic, homoclinic, Hopf, and period-doubling bifurcations for different values of the power law index n. The influence of the non-Newtonian parameter on the nonlinear development of these travelling waves is discussed. It is found at the end that the qualitative characters of bifurcation scenarios are insensitive to the variation of the power law index.Keywords: inclined plane, nonlinear stability, non-Newtonian, thin film
Procedia PDF Downloads 2844743 The Theory of Relativity (K)
Authors: Igor Vladimirovich Kuzminov
Abstract:
The proposed article is an alternative version of the Theory of Relativity. The version is based on the concepts of classical Newtonian physics and does not deny the existing calculation base. The proposed theory completely denies Einstein's existing Theory of Relativity. The only thing that connects these theories is that the proposed theory is also built on postulates. The proposed theory is intended to establish the foundation of classical Newtonian physics. The proposed theory is intended to establish continuity in the development of the fundamentals of physics and is intended to eliminate all kinds of speculation in explanations of physical phenomena. An example of such speculation is Einstein's Theory of Relativity (E).Keywords: the theory of relativity, postulates of the theory of relativity, criticism of Einstein's theory, classical physics
Procedia PDF Downloads 544742 The Magic Bullet in Africa: Exploring an Alternative Theoretical Model
Authors: Daniel Nkrumah
Abstract:
The Magic Bullet theory was a popular media effect theory that defined the power of the mass media in altering beliefs and perceptions of its audiences. However, following the People's Choice study, the theory was said to have been disproved and was supplanted by the Two-Step Flow Theory. This paper examines the relevance of the Magic Bullet theory in Africa and establishes whether it is still relevant in Africa's media spaces and societies. Using selected cases on the continent, it adopts a grounded theory approach and explores a new theoretical model that attempts to enforce an argument that the Two-Step Flow theory though important and valid, was ill-conceived as a direct replacement to the Magic Bullet theory.Keywords: magic bullet theory, two-step flow theory, media effects, african media
Procedia PDF Downloads 1294741 Sustainable Enterprise Theory: A Starting Point for Reporting Sustainable Business Values
Authors: Arne Fagerstrom, Gary Cunningham, Fredrik Hartwig
Abstract:
In this paper, a theory of sustainable enterprises, sustainable enterprise theory (SET), is developed. The sustainable enterprise theory can only be a valid theory if knowledge about life and nature is complete. Knowledge limitations should not stop enterprises from doing business with a goal of better long-term life on earth. Life demands stewardship of the resources used during one’s lifetime. This paper develops a model influenced by (the classical) enterprise theory and resource theory that includes more than money in the business activities of an enterprise. The sustainable enterprise theory is then used in an analysis of accountability and in discussions about sustainable businesses.Keywords: sustainable business, sustainability reporting, sustainable values, theory of the firm
Procedia PDF Downloads 5824740 The Study of Intangible Assets at Various Firm States
Authors: Gulnara Galeeva, Yulia Kasperskaya
Abstract:
The study deals with the relevant problem related to the formation of the efficient investment portfolio of an enterprise. The structure of the investment portfolio is connected to the degree of influence of intangible assets on the enterprise’s income. This determines the importance of research on the content of intangible assets. However, intangible assets studies do not take into consideration how the enterprise state can affect the content and the importance of intangible assets for the enterprise`s income. This affects accurateness of the calculations. In order to study this problem, the research was divided into several stages. In the first stage, intangible assets were classified based on their synergies as the underlying intangibles and the additional intangibles. In the second stage, this classification was applied. It showed that the lifecycle model and the theory of abrupt development of the enterprise, that are taken into account while designing investment projects, constitute limit cases of a more general theory of bifurcations. The research identified that the qualitative content of intangible assets significant depends on how close the enterprise is to being in crisis. In the third stage, the author developed and applied the Wide Pairwise Comparison Matrix method. This allowed to establish that using the ratio of the standard deviation to the mean value of the elements of the vector of priority of intangible assets makes it possible to estimate the probability of a full-blown crisis of the enterprise. The author has identified a criterion, which allows making fundamental decisions on investment feasibility. The study also developed an additional rapid method of assessing the enterprise overall status based on using the questionnaire survey with its Director. The questionnaire consists only of two questions. The research specifically focused on the fundamental role of stochastic resonance in the emergence of bifurcation (crisis) in the economic development of the enterprise. The synergetic approach made it possible to describe the mechanism of the crisis start in details and also to identify a range of universal ways of overcoming the crisis. It was outlined that the structure of intangible assets transforms into a more organized state with the strengthened synchronization of all processes as a result of the impact of the sporadic (white) noise. Obtained results offer managers and business owners a simple and an affordable method of investment portfolio optimization, which takes into account how close the enterprise is to a state of a full-blown crisis.Keywords: analytic hierarchy process, bifurcation, investment portfolio, intangible assets, wide matrix
Procedia PDF Downloads 2084739 Hypercomplex Dynamics and Turbulent Flows in Sobolev and Besov Functional Spaces
Authors: Romulo Damasclin Chaves dos Santos, Jorge Henrique de Oliveira Sales
Abstract:
This paper presents a rigorous study of advanced functional spaces, with a focus on Sobolev and Besov spaces, to investigate key aspects of fluid dynamics, including the regularity of solutions to the Navier-Stokes equations, hypercomplex bifurcations, and turbulence. We offer a comprehensive analysis of Sobolev embedding theorems in fractional spaces and apply bifurcation theory within quaternionic dynamical systems to better understand the complex behaviors in fluid systems. Additionally, the research delves into energy dissipation mechanisms in turbulent flows through the framework of Besov spaces. Key mathematical tools, such as interpolation theory, Littlewood-Paley decomposition, and energy cascade models, are integrated to develop a robust theoretical approach to these problems. By addressing challenges related to the existence and smoothness of solutions, this work contributes to the ongoing exploration of the open Navier-Stokes problem, providing new insights into the intricate relationship between fluid dynamics and functional spaces.Keywords: navier-stokes equations, hypercomplex bifurcations, turbulence, sobolev and besov space
Procedia PDF Downloads 184738 A Review of Existing Turnover Intention Theories
Authors: Pauline E. Ngo-Henha
Abstract:
Existing turnover intention theories are reviewed in this paper. This review was conducted with the help of the search keyword “turnover intention theories” in Google Scholar during the month of July 2017. These theories include: The Theory of Organizational Equilibrium (TOE), Social Exchange Theory, Job Embeddedness Theory, Herzberg’s Two-Factor Theory, the Resource-Based View, Equity Theory, Human Capital Theory, and the Expectancy Theory. One of the limitations of this review paper is that data were only collected from Google Scholar where many papers were sometimes not freely accessible. However, this paper attempts to contribute to the research in clarifying the distinction between theories and models in the context of turnover intention.Keywords: Literature Review, Theory, Turnover, Turnover intention
Procedia PDF Downloads 4624737 Thermal Analysis of a Channel Partially Filled with Porous Media Using Asymmetric Boundary Conditions and LTNE Model
Authors: Mohsen Torabi, Kaili Zhang
Abstract:
This work considers forced convection in a channel partially filled with porous media from local thermal non-equilibrium (LTNE) point of view. The channel is heated with constant heat flux from the lower side and is isolated on the top side. The wall heat flux is considered to be divided between the solid and fluid phases based on their temperature gradients and effective thermal conductivities. The general forms of the velocity and temperature fields are analytically obtained. To obtain the constant parameters for temperature equations, a numerical solution is considered. Using different thermophysical parameters, both velocity and temperature fields are comprehensively illustrated. Discussions regarding bifurcation phenomenon are provided. Since this geometry has not been considered yet, the present analysis is a useful addition to the literature on thermal performance of porous systems from LTNE perspective.Keywords: local thermal non-equilibrium, forced convection, thermal bifurcation, porous-fluid interface, combined analytical-numerical solution
Procedia PDF Downloads 3664736 Numerical Analysis of the Coanda Effect on the Classical Interior Ejectors
Authors: Alexandru Dumitrache, Florin Frunzulica, Octavian Preotu
Abstract:
The flow mitigation detachment problem near solid surfaces, resulting in improved globally aerodynamic performance by exploiting the Coanda effect on surfaces, has been addressed extensively in the literature, since 1940. The research is carried on and further developed, using modern means of calculation and new experimental methods. In this paper, it is shown interest in the detailed behavior of a classical interior ejector assisted by the Coanda effect, used in propulsion systems. For numerical investigations, an implicit formulation of RANS equations for axisymmetric flow with a shear stress transport k- ω (SST model) turbulence model is used. The obtained numerical results emphasize the efficiency of the ejector, depending on the physical parameters of the flow and the geometric configuration. Furthermore, numerical investigations are carried out regarding the evolution of the Reynolds number when the jet is attached to the wall, considering three geometric configurations: sudden expansion, open cavity and sudden expansion with divergent at the inlet. Therefore, further insight into complexities involving issues such as the variety of flow structure and the related bifurcation and flow instabilities are provided. Thus, the conditions and the limits within which one can benefit from the advantages of Coanda-type flows are determined.Keywords: Coanda effect, Coanda ejector, CFD, stationary bifurcation, sudden expansion
Procedia PDF Downloads 2154735 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 1554734 A Mathematical Model of Pulsatile Blood Flow through a Bifurcated Artery
Authors: D. Srinivasacharya, G. Madhava Rao
Abstract:
In this article, the pulsatile flow of blood flow in bifurcated artery with mild stenosis is investigated. Blood is treated to be a micropolar fluid with constant density. The arteries forming bifurcation are assumed to be symmetric about its axes and straight cylinders of restricted length. As the geometry of the stenosed bifurcated artery is irregular, it is changed to regular geometry utilizing the appropriate transformations. The numerical solutions, using the finite difference method, are computed for the flow rate, the shear stress, and the impedance. The influence of time, coupling number, half of the bifurcated angle and Womersley number on shear stress, flow rate and impedance (resistance to the flow) on both sides of the flow divider is shown graphically. It has been observed that the shear stress and flow rate are increasing with increase in the values of Womersley number and bifurcation angle on both sides of the apex. The shear stress is increasing along the inner wall and decreasing along the outer wall of the daughter artery with an increase in the value of coupling number. Further, it has been noticed that the shear stress, flow rate, and impedance are perturbed largely near to the apex in the parent artery due to the presence of backflow near the apex.Keywords: micropolar fluid, bifurcated artery, stenosis, back flow, secondary flow, pulsatile flow, Womersley number
Procedia PDF Downloads 1934733 From Theory to Practice: Teaching Rhetorical Theory for Effective Argumentative Essay Writing
Authors: Mohammad Ahmadi
Abstract:
Argumentative writing is a highly opinion-based form of discourse that necessitates the ability to address commonly held opinions (endoxa). To enhance the development of persuasive, argumentative essays, the incorporation of classical rhetorical theory, with a specific focus on topics related to the canon of Invention (inventio), can be advantageous. This research investigates the practical application of rhetorical theory in teaching students how to construct compelling argumentative essays. The fundamental premise of this study is the limited familiarity of rhetoric and composition students with rhetorical theory. Consequently, this paper presents an effective pedagogical approach to introduce rhetorical theory to students, beginning from a foundational level. It delineates the procedures and progression that educators should adopt to elucidate and facilitate students' comprehension of rhetorical theory while demonstrating its utilization in the writing of an argumentative essay.Keywords: argumentative essay, rhetorical theory, pedagogy, invention
Procedia PDF Downloads 804732 The Response of Optical Properties to Temperature in Three-Layer Micro Device Under Influence of Casimir Force
Authors: Motahare Aali, Fatemeh Tajik
Abstract:
Here, we investigate the sensitivity the Casimir force and consequently dynamical actuation of a three-layer microswitch to some ambient conditions. In fact, we have considered the effect of optical properties on the stable operation of the microswitch for both good (e.g. metals) and poor conductors via a three layer Casimir oscillator. Indeed, gold (Au) has been chosen as a good conductor which is widely used for Casimir force measurements, and highly doped conductive silicon carbide (SiC) has been considered as a poor conductor which is a promising material for device operating under harsh environments. Also, the intervening stratum is considered ethanol or water. It is also supposed that the microswitches are frictionless and autonomous. Using reduction factor diagrams and bifurcation curves, it has been shown how performance of the microswitches is sensitive to temperature and intervening stratum, moreover it is investigated how the conductivity of the components can affect this sensitivity.Keywords: Casimir force, optical properties, Lifshitz theory, dielectric function
Procedia PDF Downloads 964731 A Study on Game Theory Approaches for Wireless Sensor Networks
Authors: M. Shoukath Ali, Rajendra Prasad Singh
Abstract:
Game Theory approaches and their application in improving the performance of Wireless Sensor Networks (WSNs) are discussed in this paper. The mathematical modeling and analysis of WSNs may have low success rate due to the complexity of topology, modeling, link quality, etc. However, Game Theory is a field, which can efficiently use to analyze the WSNs. Game Theory is related to applied mathematics that describes and analyzes interactive decision situations. Game theory has the ability to model independent, individual decision makers whose actions affect the surrounding decision makers. The outcome of complex interactions among rational entities can be predicted by a set of analytical tools. However, the rationality demands a stringent observance to a strategy based on measured of perceived results. Researchers are adopting game theory approaches to model and analyze leading wireless communication networking issues, which includes QoS, power control, resource sharing, etc.Keywords: wireless sensor network, game theory, cooperative game theory, non-cooperative game theory
Procedia PDF Downloads 4354730 Bifurcations of the Rotations in the Thermocapillary Flows
Authors: V. Batishchev, V. Getman
Abstract:
We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer
Procedia PDF Downloads 3454729 The Grand Unified Theory of Everything as a Generalization to the Standard Model Called as the General Standard Model
Authors: Amir Deljoo
Abstract:
The endeavor to comprehend the existence have been the center of thought for human in form of different disciplines and now basically in physics as the theory of everything. Here, after a brief review of the basic frameworks of thought, and a history of thought since ancient up to present, a logical methodology is presented based on a core axiom after which a function, a proto-field and then a coordinates are explained. Afterwards a generalization to Standard Model is proposed as General Standard Model which is believed to be the base of the Unified Theory of Everything.Keywords: general relativity, grand unified theory, quantum mechanics, standard model, theory of everything
Procedia PDF Downloads 1014728 Identifying Chaotic Architecture: Origins of Nonlinear Design Theory
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the modernism, movement, and appearance of modern architecture, an aggressive desire for a general design theory in the theoretical works of architects in the form of books and essays emerges. Since Robert Venturi and Denise Scott Brown’s published complexity and contradiction in architecture in 1966, the discourse of complexity and volumetric composition has been an important and controversial issue in the discipline. Ever since various theories and essays were involved in this discourse, this paper attempt to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. As a result, we identify chaotic architecture as the correlation of chaos theory and architecture as an independent nonlinear design theory with specific characteristics and properties.Keywords: architecture complexity, chaos theory, fractals, nonlinear dynamic systems, nonlinear ontology
Procedia PDF Downloads 3774727 Inverse Matrix in the Theory of Dynamical Systems
Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova
Abstract:
In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.Keywords: dynamic system, transfer matrix, inverse matrix, modeling
Procedia PDF Downloads 5164726 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.Keywords: instability, torsion, flexural, buckling, modified newmark method stability
Procedia PDF Downloads 3604725 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls
Authors: M. A. Anwar, K. Iqbal, M. Razzaq
Abstract:
Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.Keywords: bifurcation, elastic walls, finite element, wall shear stress,
Procedia PDF Downloads 1814724 Modeling and Optimal Control of Pneumonia Disease with Cost Effective Strategies
Authors: Getachew Tilahun, Oluwole Makinde, David Malonza
Abstract:
We propose and analyze a non-linear mathematical model for the transmission dynamics of pneumonia disease in a population of varying size. The deterministic compartmental model is studied using stability theory of differential equations. The effective reproduction number is obtained and also the local and global asymptotically stability conditions for the disease free and as well as for the endemic equilibria are established. The model exhibit a backward bifurcation and the sensitivity indices of the basic reproduction number to the key parameters are determined. Using Pontryagin’s maximum principle, the optimal control problem is formulated with three control strategies; namely disease prevention through education, treatment and screening. The cost effectiveness analysis of the adopted control strategies revealed that the combination of prevention and treatment is the most cost effective intervention strategies to combat the pneumonia pandemic. Numerical simulation is performed and pertinent results are displayed graphically.Keywords: cost effectiveness analysis, optimal control, pneumonia dynamics, stability analysis, numerical simulation
Procedia PDF Downloads 328